Information Technology: Research and Development (1983), 2 (109-122)

POPLOG: A MULTILANGUAGE PROGRAM
DEVELOPMENT ENVIRONMENT

A.SLOMAN,; S. HARDY anb J. GIBSON
Cognitive Studies Programme, University of Sussex, Brighton BN1 90N, UK

(Received 5 April 1983)

ABSTRACT

POPLOG, an integrated combination of the programming languages
POP-11, PROLOG and LISP is described and its applications in artificial
intelligence research are discussed. A system overview describes how
PROLOG and LISP are built on top of the core language POP-11, and
how the system can be used interactively. The facilities provided for
program development are then described, followed by a breakdown of the
subsystem. Some examples of the system in operation are also provided.

1. INTRODUCTION

POPLOG is an integrated combination of the programming languages POP-11,
PROLOG and LISP. The core language, POP-11, is very similar in power to LISP,
though more conventional in appearance. Both provide most features found in
conventional programming languages, but are also interactive and provide unusual
facilities to reduce program development time.

POP-11 is a dialect of POP-2, originally designed at Edinburgh University for
research in Artificial Intelligence, and extensively developed at Sussex University.
Unlike some LISP systems, POP-11 uses an incremental compiler for efficiency.
Unlike most compiled languages, it is interactive, and individual procedures can be
recompiled without relinking. Other dialects of POP-2 exist, notably WonderPOP
for the DEC-10, but all share the important features of the original, described in
(Burstall 1971). An extended version of POP-11, which is extensively optimized,
is used for building the system.

POPLOG also includes PROLOG, the ‘logic programming’ language (Kowalski,
1979). The syntax is compatible with that of the DEC-10 PROLOG as described in
(Clocksin, 1981). PROLOG and POP-11 are integrated in that POP-11 procedures
can call PROLOG procedures and vice versa. Moreover, the same screen editor
VED can simultaneously be used to manipulate both sorts of files, taking appro-
priate default action. Thus, in a complex design it is possible to implement modules
in whichever language is more suitable. Combining a relatively conventional Al
language with a ‘logic programming’ language permits programs to have the best of
both worlds. For those who prefer a more uniform syntax there is a PROLOG-like
extension to POP-11, using POP-11 syntax. ’

0144-817X/83/030109-14 $03.00 © 1983 Butterworth & Co (Publishers) Ltd

110 Multilanguage program development

An incremental LISP compiler is also included, so far used mainly for teaching
and demonstration purposes. It too is integrated into the system, including the
editor. LISP is at present the most widely used language for artificial intelligence
research, although there are many different dialects, not all compatible! The
POPLOG dialect is designed to support the examples given in Winston’s 1977
textbook on AI. Like MACLISP it uses an incremental compiler rather than an
interpreter, although an interpreter could easily be added. LISP is an older language
than POP-11, and in most implementations has less clean semantics. The syntax of
LISP is very elegant and economical, and has many addicts. However the richer
syntax of POP-11 makes it more readable and allows more extensive compile time
checking, thus reducing the time spent investigating run-time errors.

All three languages compile into a common virtual machine language, POP-
ASSEMBLER. This in turn is compiled to the machine language for the host
machine, for efficiency. The code generator is one of the few parts of the system
which have to be changed for different machines. In system-building mode, instead
of compiling POP-ASSEMBLER to machine code, there is a special program,
POPAS, which generates ASSEMBLER for the host machine. This design makes it
possible to extend the system to provide additional compilers, e.g. it should be
possible to add incremental interactive compilers for PASCAL and FORTRAN.

2. WHY USE SEVERAL LANGUAGES?

There are several different reasons. The most important is that different tasks can be
best served by different languages. Moreover, there may be library programs written
in different languages which it would be wasteful to convert. POPLOG not only
combines interactive Al languages, but also (in the VAX VMS version) allows
library programs written in other languages to be linked in.

Al languages and environments have been developed to serve needs which are not
restricted to Al research. In fact, POPLOG could be employed for any application
where program development costs are significant or where the restrictions built in to
more conventional languages introduce design difficulties. Its integral ‘help’ and
teaching facilities can help an experienced programmer to learn Al techniques, and
can also be used to teach novices programming. At Sussex University the system is in
regular use both for teaching absolute beginners (including Arts students) and for
advanced research, including speech processing and image interpretation. In
addition, the text-processing facilities provided by the editor are used by many non-
programmers for document preparation.

Al languages are often thought to be wasteful because they produce inefficient
programs. However, as computing power becomes cheaper, and software develop-
ment costs rise, run-time efficiency becomes just one factor in a complex equation.
Some current attitudes are a relic of the enormous expense of early computers.

When problems are very complex and programming is difficult, it is often worth
sacrificing run-time efficiency for greater ease of program development and
maintenance. This is especially true when tasks are initially ill defined, and explora-
tions using the computer are required for clarifying the requirements for the final
program. For example, the task of defining a system which understands a natural
language is ill-defined because we cannot initially specify exactly what understand-
ing a language such as English requires. Accordingly, Al researchers have devised
programming languages and environments which emphasize ease of program
development and interactive exploration of ideas in order to clarify and refine them.

A. SLOMAN, S. HARDY AND J. GIBSON 111
3. EXTENDABLE LANGUAGES

Since different problems may require different formalisms for naturally represent-
ing information and processes, no single programming language can be expected to
meet all requirements. Thus, programmers need to be able to tailor the language for
the work in hand. For this reason, Al languages are usually extendable, in that the
programmer can modify the syntax to simplify the current task. POP-11 provides a
powerful ‘macro’ facility which allows the user to add new syntactic constructions.
If POP-11 did not already include the construction

UNTIL condition DO actions ENDUNTIL

then it would be easy to define in terms of IF and GOTO, using the built-in macro
and syntax facilities. Some of the constructs used with ‘pattern’ matching were
added to the language by library programs using this extension mechanism, as was a
very flexible ‘CASES’ construct. Even PROLOG, with its totally different syntax,
was implemented in the core language, POP-11. Since compiler subroutines are
available to the user, this sort of extension can be done very efficiently. Because the
full power of the POP-11 system is available at compile time for user-defined
macros, the facility has far greater scope than most languages providing macros.

POP-11 and LISP provide the programmer with facilities for numerical computa-
tions, and in addition a set of building blocks for nonnumerical computations,
including lists, arrays, strings, words, records, properties and procedures. For
example, POP-11 procedures can build and manipulate POP-11 procedures. This is
used also in the PROLOG system which creates POP-11 procedures to correspond
to PROLOG rules. Users can define new data-types.

Unlike more conventional languages, POPLOG data-structures can be type free,
i.e. lists can contain arbitrary objects. This makes it possible to write programs with
greater generality than in more conventional languages. For instance, there is a set
manipulation package in the POP-11 library which can be used for sets of arbitrary
objects. There is a sorting program which can reorder lists of arbitrary objects
provided that the user supplies an ordering predicate. In PASCAL, for example, it
would not be possible to define a procedure which takes an argument that is a
predicate which could be applied to arbitrary objects: the compile-time type-
restrictions provide a gain in run-time efficiency and consistency checking at the cost
of intolerable limitations (and increased compilation time). Type restrictions do
enable some useful checking to be done by a compiler, but the additional compile-
time checking does not compensate for the greatly reduced generality and the
restricted run-time debugging aids normally associated with conventional languages.

A possible development of POPLOG would be to provide optional compile-time
facilities for more elaborate consistency checks and greater efficiency.

4. Al LANGUAGES AND EFFICIENCY

Despite the comparative run-time inefficiency, POPLOG is being used for research
on speech and image processing involving ‘number crunching’. Moreover, linking in
subroutines written in other languages enables code which is critical to be written in
the most efficient language. Thus, an image understanding system can use
FORTRAN or C for the lowest level algorithms, POP-11 for intermediate process-
ing and PROLOG for the high-level, rule-based processing.

The garbage collector also saves programmer effort, concerned with reclaiming

112 Multilanguage program development

memory space no longer in use. It facilitates frequent recompilation of individual
procedures during testing and development, since memory occupied by old
definitions is reclaimed. Procedurer and structures required merely for the initializa-
tion phase of a program can be discarded after the initial structures have been set up.
The garbage collector will enable their space to be reused. POPLOG uses a fast ‘stop
and copy’ garbage collector which takes a time proportional only to the amount of
memory still in use. A novel mechanism minimizes time taken by garbage collections
when a large portion of the workspace is known to be permanently in use. When
combined with the very large address space of 33-bit machines, these techniques
considerably reduce the proportion of time required for garbage collection.

Further, during program development POPLOG can be more machine efficient
than most compiled languages, because the compiler is very fast and need only
recompile altered portions of a program. With editor and compiler integrated into
the run-time system, recompiling and relinking a modified procedure definition can
take only a fraction of a second. For this reason, a machine can support more
POP-11 programmers than say C or PASCAL programmers for a given rate of
program development per user.

Since much of the system is written in itself, and can therefore be tested inter-
actively during development, the authors were able to develop it very quickly. The
initial version of the compiler for the VAX took about three man-months, and the
first version of the screen editor about four weeks. The initial PROLOG imple-
mentation took a few weeks, and the LISP implementation even less. Because most
of the system is written in itself, the process of development and rebuilding makes
heavy use of the system, thoroughly testing the compiler, editor etc. This means that
most bugs are detected and ironed out before users can suffer from them. New
system facilities can first be tested interactively, as if they were ordinary user
programs before being optimized and linked into the main system.

Typically, a user will work entirely within POPLOG after logging in. A command
to the operating system can be given by typing a line beginning with a dollar symbol,
which will cause POPLOG to suspend itself until after the command is obeyed.
Many such commands are replaced by POP-11 procedures. For example, the editor
can be used to send mail, interrogate directories or purge files. The advantage of
remaining within one system is that user programs do not have to be restarted if the
programmer finds a need to examine a directory, send some mail or use an operating
system utility in the middle of a session. This can save both programmer time and
computer time, which would otherwise be required for recreating the context after
the interruption.

5. MACHINE COMPATIBILITY

POPLOG was not designed to be squeezed on to small machines. On the assumption
that hardware costs, especially memory costs, would continue to fall, programmer
convenience and ease of maintenance of the system were given the highest priority.
So it will not run on the microcomputers which have been available for the last few
years. However, it should be transferrable to the new generation of microcomputers
with 32-bit address spaces.

The current preference in Al programming system design is to use specialized
hardware providing a personal computer, such as the LISP machine (Weinreb, 1979)
or PERQ. These provide a very large address space, excellent graphical display
facilities and rapid response from a powerful dedicated processor. However, at

A. SLOMAN, S. HARDY AND J. GIBSON 113

present most people cannot afford such specialized hardware. Providing this sort of
environment requires a machine with a very large address space for user processes.
Given a limited budget with which to provide an interactive service for a large
number of users, time-sharing a single virtual-memory machine will be the most
economical solution for many groups of users who cannot afford to buy a number
of LISP machines or PERQs. The requirement for a large address space rules out
the cheaper personal computers. However, as hardware costs fall, it will eventually
become more sensible to use a network of personal computers.

6. SYSTEM OVERVIEW

6.1. Languages

The core language is POP-11, with PROLOG and LISP built on top of this. Unlike
PROLOG, POP-11 is relatively conventional; it is based on familiar concepts, such
as sequential execution, variables, data-structures and procedures, and the syntax
has much in common with the ALGOL family. A programmer familiar with, say,
PASCAL would not (at first) experience any culture shock. Several students familiar
with PASCAL have been able to teach themselves to use POP-11 with relatively
little help.

The PROLOG subsystem is very different. It is based on the use of predicate
logic, which is given both the usual declarative interpretation and also a procedural
interpretation. It is especially suitable for the design of programs which are given
factual information from which inferences are to be made, for instance the design of
databases where much of the information is implicit in general principles. PROLOG
can also be used for problem-solving programs where the strategy can be defined in
terms of collections of condition-action rules. Fault tracing would be an example.
Alternative actions may be associated with the same sorts of conditions, and the
system will automatically try out alternatives, using back-tracking where a line of
exploration is unsuccessful. See (Clocksin, 1981).

Facilities are provided to enable a PROLOG program to hand control temporarily
over to a POP-11 procedure, or vice versa.

POP-11 extends POP-2 in a variety of ways. The syntax has been enriched,
making it more redundant, so that it is easier to read, and the compiler can give
more helpful error messages. In addition, there is a wider variety of looping.
constructs, a built-in pattern matcher, additional procedures for manipulating data
structures (including bypassing run-time type checks where efficiency is crucial),
enhanced control facilities, ‘autoloading’ of library files, more convenient ‘section
facilities’, a mechanism for precompiling frequently used programs, a timed
interrupt mechanism, the ability to link in external routines (though not at run time)
and procedures providing system calls, including UNIX-like stream 1/0.

POP-11 also includes hash-coded association tables, and a process package (e.g.
for coroutines, back-track searching etc.). The compiler routines which are available
to the user at run time make it possible to modify the compiler so that instead of
merely compiling one language it will accept others. All are compiled into a common
intermediate language, which is then compiled to machine code for efficiency.

Many (not all) POP-2 programs will run with no alteration in POP-11, as the
syntax is handled by autoloadable library ‘macros’, i.e. procedures which run at
compile time and rearrange text before it gets to the compiler. Syntax extensions
written in POP-11 can be relatively efficient because POP-11 compiler subroutines

114 Multilanguage program development

can be called directly by user procedures, unlike POP-2 which only allowed edntmg
of the input stream by macros.

6.2. Text editor

POP-11 incorporates a screen editor, called VED, in the run-time system, allowing
the user to edit and recompile portions of a program as it is being tested. VED can
also be used for interrogating help and reference files, and for producing docu-
mentation.

The editor can include several files simultaneously, with switching between them,
and more than one can be displayed on the screen at the same time. Although it can
be used in batch mode, POPLOG is primarily intended for interactive use. The
screen editor is interposed between the user and other subsystems as shown in
Figure 1.

| User i VED POP-11/PROLOG
y
Filing system
user files - Autoloadable Package
help files - library library
teach files

Operating system
utilities

- FIG. 2. How the user views the POPLOG system

The user’s screen displays a portion of some selected file or files: user files, help
files, teach files etc. The editor is used to read teach files which explain how to use
the editor! Files can be displayed simultaneously in different ‘windows’. Edit
windows can scroll left or right as well as up or down, so that long lines can be typed
in or read.

Simple editor commands cause part of the current file to be sent to the compiler
for POP-11, LISP or PROLOG. The editor decides which on the basis of the file-
name suffix <.P’, *.LSP’ or ‘.PL’. The system compiles the fragment of text sent to
it and sends back any output to VED which splices the output into a file (this may be
the current file if desired) and then displays the output on the user’s screen. Output
stored in an edit file can easily be reviewed after scrolling off the top of the VDU
screen, making memory in the VDU unnecessary.

A typical interaction will consist of the user typing in procedure definitions (with
documentation) and test commands, pressing the DOIT key and observing the
output. If a command or procedure definition needs to be modified, a few
keystrokes after editing suffice to have the text recompiled and reexecuted. VED
also includes some 51mple text formatting facilities for nonprogram text, e.g.
documentation.

A. SLOMAN, S. HARDY AND J. GIBSON 115
7. THE PROGRAM DEVELOPMENT ENVIRONMENT

Explicit debugging tools are less necessary than with conventional programming
languages, mainly because the compiler is part of the run-time system, so that, for
example, it can be invoked at break points. This allows the user to give any
POPLOG command, not only to examine or change variables, interrogate files etc.,
but also to edit and recompile procedures. An entirely new procedure, e.g. to print
parts of some data structure, can be defined and run during a break point. Break
points occur whenever there is an error, whenever code execution reaches a declared
break point (set, perhaps, by editing a procedure definition to include a call of the
compiler) or when the user interrupts a running program, by typing an interrupt
character at the terminal.

A second reason why no separate debugging tools are needed is that POPLOG
procedures can be manipulated by POPLOG programs. This means that such
debugging tools as are required can be written in POPLOG itself and tailored to the
programmer’s own needs. For example, a simple built-in program makes it easy to
add (or remove) trace printing instructions to specified procedures, although users
can easily produce their own variants.

The ‘macro’ facility makes it particularly easy for users to define commands
which can be put into procedures to conditionally interrupt processing, to allow
communication with the user who may dynamically alter the conditions. Without
changing the source code, the macros can be switched off so that fully tested
procedures are compiled as if the debug commands were not included.

During break points, produced by errors, planned pauses or the typing of an
interrupt character, the procedure POPREADY enables the user to communicate
with the system in the same language as is used for writing programs. In some cases,
POP enables execution to be restarted at an earlier point, after one or more
procedures have been redefined, or the environment has been altered. This uses the
CHAINTO mechanism.

The POP-11 error handler takes default action (including printing an error
message) which can be altered by globally or locally redefining the relevant
procedure. Temporary redefinitions are often very useful during debugging.

7.1, Library

An essential component of POPLOG is the program library. It includes an ‘auto-
loading’ mechanism that causes library files to be automatically compiled and
included into any user program that references them. The user can alter the list of
‘autoload’ directories to be searched. In addition, there is a library of programs
which are loaded by an explicit ‘LIB’ command. A team of programmers can share
an autoload library. The editor can be instructed to alter the autoloadable library
depending on what sort of file is being used, since the editor runs a user-definable
procedure every time a file is set on the screen.

7.2. Documentation system

There are several levels of documentation: ‘help’ files, ‘teach’ files, ‘reference’ files
and ‘manuals’. Having a screen editor built into the system simplifies access to
documentation for the online user.

There are over 600 help files, and aids to access are planned. Some simple aids
already exist. A user who doesn’t know the precise name of a help file, but thinks it
- may include, for example, ‘word’, can type, to the editor

116 Multilanguage program development
H WORD

and will be given an ordered menu of possibly relevant help files, e.g.
CONSWORD ISWORD WORDS DATAWORD WORDSWITH

Because of liberal cross referencing, finding a partly relevant file will often lead the
user to the precise information required.
HELP can be used as a tree-structured menu system, starting with

HELP HELPFILES

and working down to more and more specific files. However, since the editor allows
arbitrary switching between files there is no need to be restricted to a particular tree
structure. While looking at file A, you can go up or down within it, or switch to a
new file B, or return to where you were in a previous file C, saving your location in
A. This overcomes the problem that a tree-structured menu can be too restrictive.
To simplify this use of the editor a simple key sequence is provided to invoke HELP
on a word indicated by the VDU cursor.

The files intended as off-line documentation can be accessed via the DOC
editor command. The off-line documentation is growing more slowly than online
documentation, owing to shortage of staff. Off-line manuals and primers will be
available later.

7.3. Teaching aids

POPLOG was developed for teaching as well as research. A collection of ‘teach
files’ explains not only aspects of the programming language but also aspects of Al
in general.

The approach to using the computer as a tutor is somewhat unconventional. One
of the problems of teaching programming is the enormous range of aptitudes
revealed by students. This requires a very flexible approach, allowing students to
progress at their own speeds. Instead of providing a program which rigidly controls
the learning process, monitoring all the students’ activities and passing judgement
either explicitly or implicitly, the authors favour leaving the student fully in control,
with the computer available as a friendly but not very intelligent ‘adviser’. Thus,
the student working through a teach file using the editor, is free to jump forwards,
or backwards, or to switch temporarily or permanently to another teach file. Most
importantly, he can switch freely and rapidly between using the compiler to try
things out and reading more of the teach file for advice.

Apart from providing information, teach files make suggestions for programming
exercises. The student may be asked simply to copy certain commands, in order to
see what happens. After that, variants can be explored freely before moving on. The
student is in complete control; he can try as many or as few variants as he wishes. He
may be invited to write a program to perform some task, or may be given a program
and asked to modify it or complete it. The computer does not.assess the student’s
performance. Instead, the student is left to test his own program to see if it performs
as required. If not, it is up to him to try to find out what went wrong. As students
become more advanced, they find increasing cross references to other files.

A. SLOMAN, S. HARDY AND J. GIBSON 117
8. THE POP-11 SUBSYSTEM

POP-11 is a mixture of relatively conventional and some less conventional features.
Although POP-11 has many characteristics in common with languages like
PASCAL, it also has a number of features not found in conventional languages.
Many POP-11 users have no conception of its full power, and are content to treat it
as little more than an interactive PASCAL. Indeed, POP-11 has been used to teach
Al and programming to linguistics, psychology and philosophy undergraduates at
Sussex University, and these students are encouraged to treat POP-11 as being
hardly more complex than LOGO.

8.1. The POP virtual machine

An understanding of the machine underlying POP-11 (and POP-2) is of great help
in understanding POP-11 itself. This machine is conceptually very simple, and the
mapping between POP-11 instructions and virtual machine instructions is also
simple. Expressions in POP-11 are translated into instructions for a ‘stack-oriented’
machine. For example, the imperative

X+Y—>7Z
translates into the virtual machine instructions
PUSH X Put the value of variable X on the stack
PUSH Y Putthe value of variable Y on the stack
CALL + Call the addition procedure, which removes two elements from
the stack and replaces them by their sum
POP Z Remove one element from the stack and store in the variable Z

A second ‘system’ stack is used to save the address of procedures and the values of
local variables during procedure calls. For example, the procedure

DEFINE TWICE(X); X * 2 ENDDEFINE;

‘translates to:

SAVE X Save the value of variable X on the system stack

POP X Set variable X from the user stack

PUSH X Put the value of X onto the user stack

PUSHQ 2 Put the integer 2 onto the user stack

CALL * Call the multiplication procedure, which takes two items off

the stack and puts its result on the stack
RESTORE X Restorethe value of X from the ‘system’ stack

These instructions are packaged into a procedure record, which is then assigned to
the variable TWICE. In the VAX implementation for POP, virtual machine instruc-
tions are further translated into VAX machine code; a cleaner solution would be to
augment the VAX microcode to recognize POP virtual machine instructions,
although on the VAX most POP virtual instructions produce only one or two
machine code instructions.

Understanding this two stack mechanism makes it easy to understand many

118 Multilanguage program development

features of POP-11. For example, it is clear that procedures can have more than one
result (that is, procedures can leave more than one thing on the stack); it is even
possible for procedures to have a variable number of results (though this can be
abused in obscure programs). Further, a loop instruction can leave items on the
stack to be collected into a list, for example

[% FOR X FROM 1 TO 20 DO X ENDFOR %]

makes a list of numbers from 1-20. The items left on the stack are collected into a
listby ‘[% %]

This virtual machine is enriched by the provision of a collection of system
procedures which may be given as argument to CALL, for allocating memory,
manipulating data structures, reading or writing data to files or the terminal etc.
Many of these system procedures are themselves defined in terms of the same POP
virtual machine, although a few are not and have to be reimplemented for each new
computer.

8.2. Variables

POP-11 is a ‘dynamically scoped’ language, using ‘shallow binding’, like some
LISP implementations. All occurrences of the same variable name (say X) refer to
the same location; on entry to a procedure the current value of its local variables are
saved and then restored on exit. This contrasts with the technique used in ‘lexically
scoped’ languages, such as ALGOL and PASCAL. Both have advantages and
disadvantages. Ideally a language should provide both options.

A feature of POP-11 not usually found in LISP is that procedures are themselves
just values of the variables used as their names. This means that redefining a
procedure simply requires the system to build and assign a new procedure record to
be the value of the variable. If the old procedure is no longer accessible, its place will
be reclaimed by the garbage collector.

Moreover, the local variable mechanism can be used to alter, temporarily, the
procedure associated with a name, thus changing the behaviour of procedures which
use the name. This means that a procedure F which calls the database procedure
ADD can be made to behave differently in different contexts by giving the variable
‘ADD’ different values. Powerful use of this is made by the POP-11 error handler,
which, for example, calls a procedure for printing error messages, which can be
temporarily redefined by a user procedure to alter the format or even suppress the
message. Similarly, the procedure INTERRUPT can be temporarily redefined in
certain critical contexts, so that normal interrupts are disabled. This is done simply
by making INTERRUPT a local variable of the procedure which needs to give it a
new value. On exit from that procedure the old value is automatically restored.

Finally, all the standard printing procedures assume that the characters to be
output will go to a certain procedure CUCHAROQUT which consumes characters.
Normally, this procedure sends the characters to the terminal, or prints them into a
VED file, but any procedure which calls the print routines can temporarily redefine
CUCHAROUT to do something different, such as printing the characters into a disk
file, storing them in an array etc. Using the local variable mechanism, rather than
altering global variables on entering and leaving a procedure, ensures that the
environment is reset automatically, even if the procedure exits abnormally. This
dynamic alterability of procedures is one of the features of POP which is not
available with the same generality in most LISP systems.

A. SLOMAN, S. HARDY AND J. GIBSON 119

The simple representation for procedures, combined with the ability to call the
compiler recursively, gives the user great flexibility. The user can also write
programs which CONSTRUCT procedures by assembling the text for the procedure
and then compiling that text. This can be used in writing compilers (like the LISP
compiler) and programs which modify themselves.

The intermediate POP-ASSEMBLER language allows system building to be done
by altering the final stage of the compiler so that instead of generating machine
code, it produces a file of ASSEMBLER for the desired machine. These files can
then be compiled using the host assembler, and linked together with a small number
of assembler routines written by hand for the host machine. Thus, a version of
POP-11 running on one machine can be modified to generate a system to run on
another machine, without requiring the other machine to provide a good high-level
systems programming language.

The time required for entering and leaving a user procedure (excluding the time
required for intervening procedure calls), is either 12 or 17 us plus four us for each
local variable. The faster time is the result of declaring the procedure name to be of
type ‘PROCEDURE’ so that run-time checks are reduced. Thus POP-11 can
achieve up to 80 000 procedure calls per second on a VAX-11/780. Simple system
procedures are even faster.

_ 8.2.1. Typed variables

It is. not generally recognized that typed variables, as in ALGOL68 or PASCAL,
greatly restrict the type of procedure that can be written. Consider, for example, the
following procedure to find an element of a given list satisfying a given predicate

define find(xs, p);
vars x;
for xin xs do
if p(x) then return(x) endif
endfor;
return(false);
enddefine;

FIND takes a list (named XS) and a predicate (named P). It applies P to each
element X of XS, returning the first X for which P(X) returns a nonfalse result. If no
such element exists, the procedure FIND returns FALSE. For example

find([I saw 3 ships], isinteger) =>

%k 3

find([I saw 3 ships], isprocedure) =>
** <false>

(The square brackets are POP-11 syntax for a list, ¢‘=>’’ is the print arrow, causing
printout preceded by ‘**’.)

Such procedures could not be written in a strongly typed language, because the
precise type of the list XS and the procedure P, and therefore of FIND, are not
known at compile time (it is known that P must return a truth value, but it is not
known what type of argument it requires; in fact it might be given any type of
argument).

120 Multilanguage program development

The run-time type-checks can, of course, slow processes down in comparison with
conventional languages. Some limited facilities are provided for bypassing these
checks in robust programs.

8.3. Structure expressions

It is often useful when designing intelligent programs to be able to represent data
structures within a program as well as procedure definitions. Convenient syntax for
doing this is provided, and can easily be extended using the macro mechanism. In
particular, the brackets ‘[’, ‘]’ are used for building lists whose structure is known at
compile time, and ‘{’, ‘}’ for building vectors. These structure expressions can be
nested within each other to arbitrary depths. Moreover, constants and evaluable
subexpressions are readily mixed, since the symbol ‘%’ can be used to switch from
quoted to evaluated mode.

The special syntax word ‘CONS WITH? can be used to alter the behaviour of the
curly braces. For example, if CONSFAMILY is a procedure which takes a collection
of names and a number saying how many names, and creates a data structure using
those names, then

CONS WITH CONSFAMILY
{TOM MARY %CHILDREN(‘‘TOM”’, ““MARY”’)%}

will create a structure with all the names, including those produced by the procedure
CHILDREN. The prefix ‘~’ can be used for inserting the value of a variable, and the
prefix ‘" "’ is provided for splicing the contents of one list into another.

The authors found the number of trivial programmer errors dropped when this
feature was introduced. Also useful is the notion of ‘structure matching’. POP-11
incorporates a simple structure matcher which can compare a given data structure
to a pattern and ‘select’ components of the structure as a result of the match.

The macro facility referred to above makes it possible to define new sorts of
structure expressions for particular applications. For example, instructions to build
a 2D array of characters could be represented by a ‘picture’ of its contents.

8.4. Looping with the matcher

Suppose the value of the variable DATA is a list of lists of words, and the user
wishes to search for a list which includes the words ‘I’ and ‘you’. He also wants to
make a list of all the intervening words and assign it to the variable FOUND, which
is then to be given to the procedure called PROCESS. He would need to write a set
of nested loops in a conventional language. The POP-11 version involves

IF DATAMATCHES[==[==I?7FOUNDyou = =] = =]
THEN
PROCESS(FOUND)
ENDIF
Here ‘= =’ stands for any collection of elements of the matching list. By using

patterns which show the structure as thought of by the programmer, programming
errors are considerably reduced.

Patterns may have embedded patterns and may also contain ‘restriction specifiers’
limiting the possible matches. PROLOG also uses pattern matching. It is more

A. SLOMAN, S. HARDY AND J. GIBSON 121

powerful than POP-11, in that pafterns can be matched against patterns, and
matches can be ‘undone’ if an alternative has to be tried. Moreover, the PROLOG
matcher allows variables to pick up values in a wider variety of ways. However, in
some contexts the POP matcher leads to more readable programs.

8.5. Control facilities

POP-11 allows procedures to be recursive or mutually recursive, with local variables
whose values are saved on procedure entry and restored on exit, as explained above.

It also provides the usual collection of looping constructs, and a few which are less
common.

UNTIL condition DO action ENDUNTIL

WHILE condition DO action ENDWHILE

REPEAT number TIMES action ENDREPEAT

REPEAT FOREVER action ENDREPEAT

FOR var FROM number BY number TO number DO action ENDFOR
FOR var IN list DO action ENDFOR

FOR var ON list DO action ENDFOR

And two forms which make use of the pattern matcher

FOREACH pattern IN list-of-lists DO action ENDFOREACH, i.e. for every
match between the pattern and a list do the action, with pattern variables
appropriately bound

FOREVERY list-of-patterns IN list-of-lists
DO action ENDFOREVERY
i.e. do the action for all consistent combinations of matches

QUITIF and QUITUNLESS are available for abnormal exits from loops. For
example

QUITIF(condition)(3)

causes control to leave the third enclosing loop if ‘condition’ does not evaluate to
FALSE.

NEXTLOOP(2)

causes the second enclosing loop to be restarted.

IF, UNLESS, ELSEIF, ELSEUNLESS and ELSE are available for multibranch
conditional expressions. There is a ‘switch’ statement which allows evaluation of a
numerical expression to control a jump to a label, with a default option if the
number is out of range. A very general CASES facility is provided in the form of a
library macro. '

CHAIN is a procedure which exits from its caller and then runs its argument,
allowing one active procedure to be replaced by another. CHAINTO and CHAIN-
FROM generalize this by unwinding the control stack to a specified active procedure
(or just beyond it) and then running the new procedure. EXITTO and EXITFROM,

122 Multilanguage program development

CATCH and THROW, and JUMPOUT are additional facilities for ‘abnormal’
procedure exits. :

SYSSETTIMER takes a procedure and an integer specifying a time interval,.and
causes that procedure to interrupt processing after the time interval. This can, for
instance, be used to write a scheduler for subprocesses.

The ‘process’ mechanism allows the state of a computation to be saved and then
resumed later on. This facilitates the design of a program as a collection of co-
operating processes communicating by message sendmg It also permits ‘back-
tracking’ or ‘nondeterministic’ programs.

The logic programming subsystem also allows programs to save their state for the
purpose of backtracking if continued execution reaches a failure point. POP-11 also
provides GOTO and labels, although it is rarely necessary to use them, given the
other more structured facilities for transferring control.

ACKNOWLEDGEMENTS

Tﬁe authors would like to thank C. Mellish, J. Cunningham, R. Evans, S. Isard, D.
Hogg, T. Khabaza and D. Roberts. .

REFERENCES

Burstall, Collins and Popplestone (1971) Programming in POP-2. Edinburgh, UK:
Edinburgh University Press.

Kowalski, R. (1979) Logic for problem solving. Berlin: Springer-Verlag. :

Clocksin, W. and Mellish, C. (1981) Programming in PROLOG. Berlin: Springer-Verlag.

Winston, P. H. (1977) Artificial Intelligence. London: Addsion Wesley.

