Information Technology: Research and Development (1983), 2 (23-42)

GRAPHICAL PRESENTATION OF INFORMATION
AND SERVICES: A USER-ORIENTED INTERFACE

H. P. FREI anp J.-F. JAUSLIN
Swiss Federal Institute of Technology (ETH), Zurich, Switzerland

(Received 17 August 1982, revised 22 October 1982)

ABSTRACT

A novel user-machine interface for information retrieval (IR) is described
which supports the associative way of human thinking and suggests asso-
ciations of thoughts by displaying and opening query-related paths. Both
information and commands are structured in a tree-like fashion; these
trees are displayed on a graphics screen in separate windows and can be
explored by means of motion commands. The two principal services
offered by the system enable browsing through both information structures
and information items as well as formulating and processing queries.
However, the traditional query formulation is replaced by the concept of a
virtual information item. The services of the information retrieval system
are both informally described and presented by means of sample dialogues.
The system is implemented on a relatively small personal computer and the
software is written in a high-level system programming language.

1. INTRODUCTION

As early as 1945—before the existence of modern computers—V. Bush described his
visionary device memex as a mechanized private tool enabling its users to store,
process and retrieve almost infinite amounts of data (Bush, 1945). In his article Bush
also makes clear that the human mind operates by associations, that it .follows
previously built-up #rails and that it instantly swaps to new items as soon as this is
suggested by the associations of thoughts.

* Despite the progress made in technology in general and in interactive computer
systems in particular, today’s systems have not yet lived up to Bush’s nearly 40-year-
old visions. While many of the technical problems of storing data have been solved
in the meantime, most interactive systems are still unable to provide enough flexi-
bility and ease of use to effectively support the associative way of thinking of their
users.

This also holds for present-day information retrieval (IR) systems: users are still
dealing with the baroque tools of so-called command languages, are still typing
rather complicated, lengthy character sequences into a keyboard and—frequently
—have to decipher linear character strings where a pictorial output would be more
appropriate. Getting useful information after a simple tap of a key, or browsing

0144-817X/ 83/01 0023-20 $03.00 © 1983 Butterworth & Co (Publishers) Ltd

24 User-oriented interface

through large amounts of data by simply deflecting one of the levers to the right as
Bush (1945) envisaged, is still wishful thinking.

Unfortunately, we are not in the position to present a technical realization of the
proposed device memex. However, the system that was the basis for this study of
man-machine communication has a few characteristics of #iemex: the hardware very
much resembles Bush’s ideas as the system is implemented on a personal computer
with a pointing device as the predominant input medium; selected information items
and information structures immediately show up on the screen—often in a two-
dimensional graphical fashion—and the user is able to jump from one information
item to the other at will; information items exhibiting a close association can be tied
together by establishing paths and may, subsequently, be retrieved and instantly
displayed by following such paths.

Although convéntional commercially available bibliographic data are used to test
the functions and performance of our system, the system itself departs in two
essential points from many of today’s IR systems:

1. Data organization: Stored information can structurally be described as trees and
networks. A tree file system is used to implement these structures and even in
the case of a network, an hierarchical organization is emphasized by means
of a tree. This allows an easy visual representation on a graphics screen.

2. User-machine interface: The dialogue between the user and the system is
conducted via up-to-date hardware; particularly important are the so-called
mouse as input device and the graphical refresh screen as output device. How-
ever, most notable is the novel organization of the dialogue. Both the structure
of the information and the structure of the available command set are graphic-
ally displayed—in separate windows—on the screen. In addition, the user may
build up hypothetical information items to be used as the input to retrieval
algorithms.

This paper discusses the philosophy underlying our user-machine interface. On
top of that, the features at the user’s disposal and the reactions of the system to
requests entered by the user are presented. Putting together such a description is a
cumbersome undertaking as it is difficult to convey the flavour of a dialogue with a
highly dynamic interactive system by means of a linear sequence of characters.

The IR system Caliban is implemented on the personal computer Lilith and has
been written in the high-level system programming language Modula-2 (Wirth,
1982). We refrain from presenting the hardware and basic software of Lilith in detail
as this has been done elsewhere (Wirth, 1981). Instead, we only mention those facts
absolutely necessary to understand the user-machine interface. The data organiza-
tion underlying Caliban is described elsewhere (Birtschi and Frei, 1982). Rather
than putting together our own small test collection, we tested Caliban with
commercially available bibliographic data on Physics, Electronics, and Control.
These test data were purchased from INSPEC in machine-readable form.

In section 2 the fundamental ideas underlying Caliban’s user interface are
presented and it is pointed out how the approaches of Caliban and conventional IR
systems differ. Section 3 explains how the stored information is structured and how
these structures are displayed to the user. Section 4 discusses the services available to
the user and how these services are represented. Finally, in sections 5 and 6 the two
principal services Browse and Search are informally described as well as presented in
the form of sample dialogues.

H. P. FRE1AND J.-F. JAUSLIN 25
2. FROM COMMAND LANGUAGES TO USER INTERFACES

Command languages are considered crucial parts of interactive systems as they are
the means of accessing the services rendered by the system. Frequently, users even
tend to identify a system with its command language and the power of a system is
often judged by merely ‘assessing its command language. Examining present-day
command languages and the usage of the systems they control reveals that the
average user ‘is often placed in the position of an absolute master over an awesomly
powerful slave, who speaks a strange and painfully awkward tongue’, as Miller and
Thomas (1976) put it. Let us first examine the main characteristics of a typical
command language, then we will list some of the principal arguments that might
have caused Miller’s and Thomas’ provoking quotation, and finally we will present
alternative ideas, namely the ones that influenced our approach to interfacing the
user with a machine.

The typical command language of a conventional interactive system consists of a
fairly large set of commands, usually arranged as a linear list. Such a system may
therefore be viewed as a one-state machine: after a command has been executed, the
system returns to the same state it was in before the command was entered. From the
user’s point of view this looks as follows: each time the user issues a command, he or
she does a selection out of the very long—but invisible—list of commands. Note that
the list of available commands is hardly ever displayed to the user; in most cases the
list would be too long to fit on a screen anyhow.

Commands usually have to be invoked by typing a character string into a
keyboard. Especially when the command name is long, this is a cumbersome and
error-prone procedure. Only the more recently developed interactive systems
provide special keys, switches or so-called function keys to invoke the most
frequently occurring commands.

In short: command names, possibly followed by some arguments, have to be
typed into a keyboard; the command names and their meanings have to be learned
before they can be used and the more commands are memorized and the faster they
can be invoked, the better the system is mastered. Unfortunately, such systems only
fit the needs of some sort of expert user although they are often used by a wide
variety of other persons. Many interactive systems as well as many of today’s
frequently used interactive IR systems have these or similar characteristics. The
following factors contribute to the fact that they are difficult to use for a non-
expert:

1. The set of commands is not structured or when it is the structure is not visible.

2. Commands and their meaning have to be memorized; a minimum number of
such commands is necessary when a system is to be used in a meaningful way.

3. Many commands are cumbersome to invoke (most users are untalented typists).

4. Many commands have confusing names; in addition, the names are often
abbreviated but sometimes according to obscure rules.

5. Syntax errors are possible.

An additional confusion arises with interactive IR systems: in most cases
command words and index terms used to describe the stored information are
identical in appearance when typed into the keyboard. Both commands and terms
have to be expressed by means of character strings. At the present time, most IR
activities are still performed employing command languages with the above-

26 : User-oriented interface .

mentioned deficiencies (e.g., DIALOG, ORBIT). More recent developments
towards both better structuring command sets and using hard or soft keys to invoke
commands (e.g., STAIRS) have had few consequences on the practice of IR so far.
Part of the problem is that many commercial IR systems still have to cope with the
characteristics of the teletype terminal as the sole means of connecting users and
computer systems. :

At the present time, interactive systems in general and IR systems in particular are
almost exclusively operated by systems specialists. In the not too distant future such
systems will be used by the end user directly, i.e., by the person who needs the
information to be searched for. This is why our prime objective was to design an IR
system which would be as user friendly as possible, thereby enabling the end user to
search without the help of an information specialist. Referring to user friendliness
does not only mean that the command language is easy to learn. Rather, our aim was
to build a system which is self-explanatory to the extent that there is very little or
even no need for a written manual. Written manuals are inadequate tools for
describing highly flexible interactive computer systems.

This goal of having an IR system tailored to the end user directly is ambitious.
First of all, it means making another step in the evolution process from command
languages to user interface. For this reason, we studied the entire system from the
point of view of the end user. The belief was that the system, including the stored
data, has to be exposed to the user resulting in a user interface rather than another
new command language.

An important decision when designing Caliban was to get rid of the character-by-
character view of information retrieval. Rather, the Caliban user may deal with
information concepts disregarding the fact that such concepts are usually described
by index terms or keywords in the form of character strings. In addition, the
structure of these information concepts is to be disclosed to the user, as is the case
with the more innovative of the currently available IR systems.

We concluded that the most important property of a user-oriented system is its
transparency; after the system’s initialization Caliban itself offers both the available
services and the information to the user. The services comprise all the actions a user
may perform employing the IR system, i.e., browsing through the stored objects via
content-describing indexes, putting together and editing queries, processing queries,
building up and combining object sets. The information consists of all the objects
contained in the system as well as of the content-describing indexes. In contrast to
most existing IR systems, Caliban clearly displays the structure of both the services
and the information so that the user has an unconstrained choice from what is
offered.

Our belief is that only such a system is able to supplement efficiently the end
user’s way of searching for information, as in most cases the human search strategy
is not very systematic. Bush (1945) has already pointed out that, as the thoughts of
the end user are guided by associations, their train may be deviated by newly gained
knowledge and may return to the mainstream followed beforehand, thus jumping
back and forth. In this way the end user is collecting piece after piece of information
until his or her needs are met. However, this is only possible when both the services
and the information are presented in a lucidly arranged manner.

To distinguish the different concepts when Caliban is used, the screen is par-
titioned into three distinct windows at all times: Information window, Command
window, and Message window. The information window is the largest of the three
windows and contains both information structures (indexes) and information items.

H. P. FREI AND J.-F. JAUSLIN 27

Actual results of browsing as well as results of queries are displayed in this window.

The command window contains the structured set of available services. In order
to invoke a service of Caliban it has to be selected from the services displayed in this
window. In addition, the command window continuously exhibits the currently
active service when the system is in use. This is a valuable aid to the user, e.g., when
getting back to the system after having been interrupted by a phone call or the like.

The message window contains various kinds of system messages. Primarily, these
messages are thought to support the user while working with Caliban. This is why the
message window can be ignored by an experienced user most of the time. For
example, it always contains a sketch of the mouse, used as input device, indicating
the meaning of the three push buttons—definitely unnecessary information for an
experienced user. (As we shall see later, these buttons change their meaning quite
often.)

3. DISPLAYING INFORMATION STRUCTURES

Very often humans tend to structure information in an hierarchical manner: broad
concepts are defined and partitioned into groups of narrower concepts; these
narrower concepts are again partitioned until finally specific information items are
defined. A well-known hierarchical partitioning of knowledge is the decimal
classification. Genealogical trees or a table of contents in a book are typical
examples of this kind of representation. It seems to be natural for human beings to
split general concepts into more detailed sub-concepts. Furthermore, hierarchical
representations are used widely enough to allow someone, who did not define a
* particular structure, to easily understand its meaning.

Unfortunately, the nature of information is sometimes more complex than a pure
hierarchy. A network is often the appropriate structure. A typical example is a
thesaurus where there are a number of connections (e.g., to related terms) which do
not fit into the hierarchy. Caliban is able to handle both hierarchies and networks.

As many information structures (e.g., classifications, thesauri) are of significant
size, the problem arises how to present them to the user of a system. There are two
limiting factors. First of all, the amount of information a user is able to perceive is
restricted. Secondly, the dimension of a screen is limited and only parts of a sizable
structure can be displayed; in addition, if a graphical presentation is chosen, many of
the edges of a structure would lead to nodes outside the screen. This applies to both
hierarchies and networks. However, edges of an hierarchy crossing the boundaries of
a screen invariably lead to a node of the immediate structural neighbourhood: a
father or a son. Contrarily, edges of a network crossing the boundary of a screen
may lead to an arbitrary—e.g., structurally far distant—node of the network. As we
felt that such edges would confuse the user, we decided not to display them on the
screen. ’

We ended up capturing the important relationships of a network as an hierarchy.
Only the hierarchy is presented to the user in a graphical manner despite the fact that
in many instances there are further connections of information structures. In this
way, graphically represented trees are displayed to the user instead of networks.
However, the user may request additional relationships in a non-graphical repre-
sentation.

Because of the restricted size of the window in which we display information, only
three levels of a tree can be graphically displayed. Nodes are represented as
rectangles with their names written inside and the father-to-son edges of the

28 User-oriented interface

structure are explicitly drawn as line segments.

The node in the centre is called the current node; it is highlighted to distinguish it
from the others. Only the father of the current node, two brothers and at most seven
sons are displayed at the same time. Figure 1 shows how this partial view is extracted
from the entire tree: all the nodes appearing inside the dark line are displayed. This
view of the tree can be changed in two different ways: either a new current node is
chosen—which will then appear in the centre of the window—or invisible sons of the
actual current node are made visible. Dots appearing above the leftmost or the right-

most son of the visible part signify that more nodes are available in that direction.

- grand

general tree

father

visible

part father

left current right
brother node brother
///
_‘/
1st son 2nd son 3rd son 4th son Sth son 6th son 7th son Nth son
!

/ /\ /

Fi1G. 1. Visible part of a tree

Hinformation M
retrisval
[systems

F1G. 2. Part of a thesaurus as it is displayed on the screen*

* We apologize for the quality of this and the following figures (laser beam printer output
from the computer screen)

H. P. FREI AND J.-F. JAUSLIN 29

In our test data one of the index structures is a Thesaurus. Part of it is displayed in
Figure 2 with the term Information science as the current node. A thesaurus is a
typical example of a network with an hierarchical main structure and a number of
other connections such as connections to BROADER TERMS, RELATED
TERMS, TOP TERMS and CLASSIFICATION CODES. The broader terms
represent more general concepts in addition to the father term which exists all the
time. Related terms are terms with a direct relation to a particular node term other
than the nodes directly connected through the tree structure. Top terms are the
possible ancestors and classification codes represent connections to the outside of
the index structure, namely to a classification tree.

In contrast to the pictorial representation of the hierarchical part of the structure
(cf Fig. 2) these additional connections are represented in a textual manner (Fig. 3),
i.e., still in a character-by-character representation.

INDEX STRUCTURE : Thesaurus
TERM : Information science

SEEN FROM TERMS : Computing applications to information sci y tlon, Librarlanship, Library

BROADER TERMS : Computer applications
RELATED TERMS : Language translation, Micraforms, Publishing, Text editing

TOP TERMS : -

CLASSIFICATION CODES : Information sci and tion

Fi1G. 3. Additional connections are presented textually

4. SERVICES AND THEIR REPRESENTATION

Although many of the services of an interactive system are conceptually divided into
several sub-services, very often the sub-service commands are on the same level as the
service commands. The casual user encounters the following problems: if a system is
powerful, there are a great number of commands available and it takes a long time
to memorize a particular command subset for using the system in a simple way; as
many of the command sets consist of simple linear command lists, it is difficult to
find out in which state the system is, i.e., which commands are meaningful and/or
executable. If the services of an interactive system are structured, another problem
arises when a command is given: the system generally enters a new mode, i.e., the
previously active environment is left. The set of possible commands changes which
means that either new command names become available or old ones change their
meaning. The difficulties for the user originate mainly from the lack of information
provided by the system. It is our belief that, if the services of a system are structured,
this structure should appear on the screen.

The Caliban services are structured and—as we had already a tree representation
for the data—we decided to use the same graphical method to represent our services.
This is in contrast to referring to a linear list of commands and has a number of
advantages. A service is a part of the system and constitutes an exactly defined
activity, a state of mind of the user. Therefore, only those sub-services and
commands relevant to the particular service have to be active and executable. As
soon as another service is entered, other sub-services and commands become

30 User-oriented interface

relevant and active. In this way, the Search process is divided into the process of
creating and modifying a query, the process of finding and inspecting items and the
process of printing and saving results.

Figure 4 shows the general form of the command tree. The Search service, for
example, is subdivided into five commands. Each of these commands is directly
executable just by pointing to it.

Commands

/

/
Comblne Modify
Browse Search ;| EditSet Commands
Fing Modify Print Pick ’

FiG. 4. The command tree

There are two ways of invoking commands in Caliban:

1. To point to a specific position on the screen, say a tree node or a so-called soft
key. This quick and powerful method is accomplished by first putting the cursor
at the desired position and then pressing any of the buttons of the pointing
device. In order to eliminate any kind of doubt, the system always illuminates
the object when the cursor is placed on it. In this way, the user knows exactly
in which state the system is and to where he or she is pointing.

2. By pressing a hard key either on the keyboard or on the pointing device inde-
pendent of the position of the cursor.

In Caliban, pressing hard keys on the keyboard is reserved for commands which
have irremediable consequences, say deleting an item. Pressing a mouse button is a
very fast way of invoking a command, especially when there is no need to position
the cursor to a specific location. This mode of execution is reserved for commands
having minor consequences if they are entered by mistake. Most of the time the
combination of positioning the cursor and pressing a mouse button is used in
Caliban. As different meanings can be assigned to the buttons of the mouse when
pointing to different locations of the screen, an explanation of the three buttons is
always given to the user in the message window, which is a useful aid for the casual
user.

At the outset, after the system has been started, all the three buttons of the mouse
have the same meaning as shown in Figure 5: they serve to EXECUTE a command.

H. P. FREIAND J.-F. JAUSLIN 31

As already mentioned, the node the cursor is positioned on is always highlighted: in
Figure § it is the node representing the command Browse.

R L

Information péeis

lessage Ehc. s
EXECUTE
EXECUTE —‘m; ol EXECUTE

Press any button of the mouse to
execute the command you are pointing to

I ER

FiG. 5. Situation after starting Caliban

Caliban provides two different ways of getting information:

1. Browse, meaning to move about index trees similar to inspecting the books on
the shelves of an open library.

2. Search'to prepare a query and submit it to the system in order to retrieve items.
Edit set and Combine set allow the combination of the retrieved sets of items.

5. BROWSING

One of the main objectives of the system is to support and even suggest associations
of thoughts to the user and to supply a means of following the different paths
opened. This is particularly important when the user has only a vague idea of what
he or she is looking for. In this case the user needs a browsing facility which allows
collection of terms that can be used in a query formulation. The graphical repre-
sentation of the tree structures on the screen facilitates finding ideas for future use.
In addition, the user gets an impression of structure when explicitly moving to the
father or to one of the sons of the current term or when inspecting further relation-
ships. This kind of browsing through information supports an associative way of -
thinking by humans.

Browsing also allows inspection of real information items attached to the index
terms. This gives a more precise idea of the meaning of a particular term and is

32 User-oriented interface

similar to what the patron of a small library can do by opening a few books when
inspecting the shelves. Furthermore, we are convinced that in many cases a
convenient browsing facility serves to find the requested documents directly without
formulating a formal query.

5.1 Test data

As mentioned in section 1, we employ bibliographic test data purchased from
INSPEC. Among the five index structures Caliban provides, there is a classification
and a thesaurus. Every node symbolizes an index term and there is always a set of
documents attached to it. In contrast to the classification, which is a regular hier-
archical structure containing about 2600 nodes, the structure of the thesaurus is a
network. It was difficult to implement the thesaurus tree with more than 6000 nodes
because it has a very large fan-out, namely 600 first level sons. An intermediary level
of alphabetically ordered nodes has been inserted to simplify the access to these
nodes. In addition to these two index structures purchased from INSPEC, we built
three others: free-indexing terms, author/editor and publisher. They simply consist
of trees with nodes that are alphabetically ordered on each level. An intermediate
level of indexes was introduced where deemed necessary.

5.2 Sample dialogue

In order to illustrate the browsing process, we assume a person looking for informa-
tion about Computers. Furthermore, we assume that the person is unable to express
this wish exactly, i.e., to formulate a query. For this reason the user enters the
service browse (Fig. 6). The system then offers a choice between the five available
index structures. Our particular user selects the thesaurus by placing the mouse-
shaped cursor on that node and pressing the left button of the mouse, i.e., the
button SPECIFY INDEX (cf., message window).

After the invocation of this command the thesaurus tree appears. As there would
be too many direct sons, an intermediate level of alphabetic nodes is displayed
(Fig. 7). Our user determines that the term Computers is located in the subtree of the
node ‘Coi TO Control o’. In order to find it, this subtree has to be inspected. The
‘user first.moves to the node ‘Coi to Control o’ by placing the cursor on the node and
then pressing the mouse button MOVE. Whenever the user points to a node and
presses MOVE the tree is updated so that the indicated node moves to the centre of
the screen (i.e., the indicated node becomes the current node). In our sample
dialogue ‘Coi TO Control 0’ becomes current node (Fig. 8). The arrows at the left
and right bottom of the information window allow movement to invisible sons of
the current node.

More specifically, in our example the double arrow in the lower right hand corner
of the window enables the node Commutation to be shifted to the leftmost position
on the screen, thus displaying six more sons. The jump arrow pointed to in Figure 8
causes a jump bar to appear on the screen (Fig. 9), which represents both the range
of the entire set of sons and the range of the presently displayed visible ones. In this
way the user may estimate how many nodes are invisible and what portions of
invisible sons are located to the left and to the right of the information window. The
range of visible nodes may be moved to the left or to the right by continuously
holding down the respective mouse button. In this way, the term Computers is
finally reached in Figure 10 and the three sons of that term are displayed in the
window.

H. P. FRE1IAND J.-F. JAUSLIN 33

[Tnformation

NO EFFECT
SPECIFY INDEX—‘ } rQUIT

FiG. 6. Choosing the index structure Thesaurus

Information Boaacs

ey

NO EFFECT
MOVE o § g DATA

R B3] =] EEEE

FiG. 7. First level of sons

34 User-oriented interface

Information £

Collections o
§physical data

NO EFFECT
MOVE -1 i rDATA
N

BB] [) EE EET

FiG. 8. Moving down to find Computers

[Information o

LYY

3
{peripheral

0K RETURN
TO THE LEFT—l [} rTD THE RIGHT

(o]o =] E e B B

FIG. 9. Invisible sons can be fetched by a jump bar

H. P. FREIAND J.-F. JAUSLIN

Information

Mescage koo

NO EFFECT
MOVE — i - 0ATA
it

=3 B o]

FiG. 10. Computers as current node

Information [

Index Structure : Thesaurus

Term : Computers

Related Terms : Artificial intelligence, Automata theory, Calculating apparatus, Computer architecture,
Computer debuggmg, p facilities, C grap Computer interfaces,
Computer maintenance, cgmputer metatheory, Computer opeutmg e
Computer perlpherll quip g, Data handling,
Data processing, Digital storage, Flle orgunlsutlon, Logh: circuits, Logic design Numerical analysis,
Program processars, Programming | g theory, Sy engineering

guages,

Classification Codes : Analogue and digitat s and systems

P

Sy

Message Kidsibei il

P A

e e A Command

NO EFFECT
JuMP TO NODE—' | rRETURN TO TREE

35

23 B o]

FiG. 11. Cross connections are displayed textually

36

User-oriented interface

Information f.....

AL

Message b . P

NO EFFECT
MOVE | i r DATA Commands

Title : The ins and outs of dp insurance

Author : Migliaccio, G.R.

Classif : Computer facllities, inistration and g

Thesaurus : Computer instaflation
Insurance

Free Index Term : insurance needs
Bargaining position

Underwriters
Computer instafation

CODEN : Codcb8
Vot :vol.10, No.2
No of pages : 26-8, 30

Date of publication : Feb. 1978

Message Eiuion oo ot

6 documents found

SAVE
ANOTHER ITEM1¢ } rRETURN T0 TREE

= B2

B B o] [F=re] B

Fi1G. 13. One of the items of the data set belonging to Computer installation

H. P. FREIAND J.-F. JAUSLIN 37

If the index structure is a network, as in the case of our thesaurus, the user can
request more structural information about the current node (MORE). The non-
hierarchical relations will appear on the screen, as it is shown in Figure 11 (cf.,
Fig. 3). If one of the related terms seems to be of interest, the JUMP TO NODE
command causes the selected term to become the current node and displays this term
including its neighbourhood in the usual tree-like fashion. Selecting such a term is
similar to selecting a term in a tree: as soon as the cursor is placed close to the screen
position where the term appears, the system inverts the character string. In our case,
the user decides to jump to Computer installation as it is a domain he or she is
interested in (Fig. 12). This neighbourhood happens to be a very simple one:
Computer installation is a leaf node, it is the only son of the node installation.
However, the user has no idea where this visible neighbourhood is located in the
index structure: it may be very close or far distant to where he or she jumped off.
This is why the system keeps track of the jump-off position, enabling the user to
directly jump back by means of the soft key BACK shown in Figure 12.

The command DATA allows direct access to source data belonging to the node
pointed to. For every node displayed on the screen attached data can be requested by
just placing the cursor on it and pressing the button DATA. Figure 13 shows the
situation after this command has been executed while pointing to the term Computer
installation. The size of the retrieved set is indicated in the message window: 6
documents found. One of the retrieved documents is displayed in the information
window. Its description contains the term Computer installation in the thesaurus
field, as will all of the other five retrieved documents.

As mentioned earlier, the IR system Caliban has been designed to treat various
kinds of information such as office information, letters, memos, technical reports,
personal data, etc. We demonstrated the capabilities of the system using our current
test data: bibliographic material. Although other data would certainly be structured
in a different way and therefore represented differently, the browsing facility on the
corresponding index structures would be the same.

Browsing is to be distinguished from other forms of retrieving information:

1. Retrieval exclusively depends on the particular decisions made by the user while
moving about the index data; however, the user may follow his or her associa-
tions of thoughts which is, in many cases, a concept superior to asking plain
questions. On the other hand, a great deal of information can be missed when
the retrieval depends on more or less random paths.

2. The browsing process does not allow one to access data from several parts of
index structures at the same time: retrieval is limited to asking for data
connected to one term only. The retrieved items are linked only by that term.

The next section explains a completely different approach to retrieving informa-
tion items.

6. QUERY FORMULATION

When formulating a query, the user has to fill in the fields of a query template rather
than using a command language. In Figure 14 the user is preparing what we call a
virtual information item, similar to filling in a row of a sample relation in query by
example (Zloof, 1975). Each searchable field of the stored information items, such
as author, publisher, classification, thesaurus or free indexing terms in our test data,

38 User-aoriented interface

may be left blank or filled in according to the information the user is looking for. If
a user is looking for items on a specific subject written by a specific author, the
corresponding fields have to be filled in. Then, the virtual information item is
submitted as query to the system which will return a set of real information items
corresponding to the virtual one. However the user does not need to type long and
complicated sequences of characters: the tree-structured indexes are always available
(SHOW INDEX TREE) to assist the user when preparing a virtual information
item. Terms may be picked directly from the screen and included into the virtual
item.

Information B -

Author :
Classif :
Thesaurus : | -
Free Index Term :
PublishedBy :
Message K ol oo oo i ‘“W "g Command §

SHOW INDEX TREE
MOVE CURSOR—' } rEX!T

&Bmwug

You can also insert characters (from keyborad)

or delete lines (DEL key) sese
. Fimi Al Modify Save jiit S F;;'int %
¥ B] el EE

FiG. 14. The query template

The MOVE CURSOR command (Fig. 14) allows explicit selection of a field of the
template in order to fill it with query information. No matter to which field the
cursor points, the index structure corresponding to that particular topic may be
displayed by invoking the command SHOW INDEX TREE. Although in search
mode, the user may use all the BROWSE facilities described above, browsing
becomes a sub-activity of searching. (Whether browsing should also formally be
treated as a sub-activity of searching and appear as a brother node of Find, Modify,
etc. in the command tree is debatable.) However, this time, interesting terms can
automatically be included in the query formulation by activating the command
CHOOSE. In Figure 15 the two thesaurus terms Information retrieval and Informa-
tion retrieval systems have been selected for inclusion into the query formulation,
i.e., into the virtual information item. In fact, an arbitrary number of terms

H. P. FREIAND J.-F. JAUSLIN 39

accessible through MOVE commands could be selected and included in the virtual
item. Caliban acknowledges the choice made by displaying the terms in the message
window.

Information B .~ "

“linformation} §
3 v si:

,A_"lnformation E.;
2 hid 3
SN

B2 00
Message g,oo. - R
CHOOSE
MOVE m § r—D4TA
-l: - =

Information retrieval
Information retrieval systems

| RS

Fi1G. 15. Choosing terms to be included in the query

The index tree is left by the QUIT command and all the items chosen appear in the
template. The 'user could now select any other index structure (or even the same
again) in order to CHOOSE more index terms. In our sample dialogue he or she
selects the classification tree and picks two other terms, namely Information storage
and retrieval and General computer topics.

Once the template is satisfactorily filled with query information, the command
Find is activated to retrieve real information items. Prior to executing the actual
query algorithms, the user gets the opportunity to weight every field according to the
importance a term should play in the retrieval process. This is done by ‘colouring’ a
rectangle for every term: the darker the rectangle, the higher the weight and the
more important the term (Fig. 16). These weights are used by both the retrieval and
the ranking algorithms. The retrieval algorithm retrieves those information items
which exhibit a higher similarity to the virtual information item than a certain
threshold. The ranking algorithm ranks the set of retrieved documents by assigning
higher ranks to items with higher similarity to the query.

* After a set of real information items has been displayed to the user it is possible to
choose an arbitrary item as the next query (Fig. 17). This is made possible by the fact
that the structure of a Caliban query is identical to the structure of a real

40 User-oriented interface

L

Information £~ e

Author :

Classif : information storage and retrieval
General computer topics

Thesaurus : Infermation retrieval
[] Information retrieval systems

Free index Term :

PublishedBy :

Message &‘ A
0K TERM WEIGHTED
INCREASE-‘ } r.DECREASE

=S B3 [eur]

F1G. 16. Weighting the terms in the query formulation

Information E PRI e R i B s R

Title : intformation sciences at georgla institute of technology: The formative years 1963-78

Author : Slamecka, V.
Giehl, J.

Classif : General computer topics
infor i d and

Thesaurus : Information science

Free Index Term : Georgia institute of technotogy
Research
Theory
Information processing technology
Information systems
Strategies
Programs
Information sciences

ournal : if. Process. And manage. (Gb)

LY XY

Message Boo

CHOOSE
ANDTHER .ITEM—i ‘ﬁ‘—_RETURN T0 TREE

5 documents found

FiG. 17. One of the retrieved items

H. P. FREIAND J.-F. JAUSLIN 4]

information item. In addition, the user may select any terms found in any of the
items and include them in the template initially prepared. Other modifications like
including new keywords or deleting old ones, can improve the quality of the search.
In this way, the quality of retrieved item sets can continuously be upgraded in an
iterative process. The idea of directly taking into account results of previous
searches has already been reported by Oddy (1977), who describes a system which
“enables one to insist on terms belonging to a retrieved item or remove those terms
from the query which seem to be outside the domain of the search. There are two
major advantages of such a retrieval process:

1. A query may be prepared by directly employing index structures.
2. The query is very similar to the information item.

7. CONCLUSIONS

In the not too distant future computers will be used in many more sectors of the
economy than is presently the case; they will even be used in the private home.
Collecting, storing and making information available will be prominent tasks
performed by these computer systems. As their users will not be computer
specialists, we agree with Crawford who—in a recent paper (Crawford, 1981)—
quotes B. Mahon: ‘New search and retrieval techniques are a must.’

The user interface described in this paper is an attempt to remove the still existing
barrier between the persons seeking and the systems containing information. This is
why only easy-to-understand concepts underlie our man-machine interface. These
concepts include the notion of browsing through both information structures and
information items. Another such concept is the virtual information item which
seems to be a natural way of expressing a user’s information needs.

In order to make flexible browsing and efficient searching possible, powerful
interactive systems are necessary. They can be designed and built employing those
modern hardware and software tools emerging at the present time. However, in
terms of modern hardware not only faster processors are to be mentioned but also
user-friendly input and output devices. Software-wise the advent of high level
system programming languages is the notable event. We made use of all these novel
tools when developing the IR system Caliban. ‘

ACKNOWLEDGMENTS

We would like to thank N. Wirth and his group for providing the hardware and
systems software which enabled the development of Caliban. We are indebted to
‘M. Birtschi and P. Lamb for providing numerous valuable ideas, overall support,
and—most important—a great deal of software. We are also grateful for many
constructive comments by a referee who must have spent much time doing a
thankless job.

REFERENCES

Bartschi, M. and Frei, H. P. (1982) A data organization for information retrieval on a
personal computer. In Personal Computing. (Ch. Schlier, ed.) pp. 75-91. Stuttgart: B. G.

Teubner.
Bush, V. (1945) As we may think. Atlantic Monthly 176, 101-108.

42 User-oriented interface

Crawford, G. W. F. (1981) The hardware approach to information retrieval systems and its
impact on the information market in the 1980’s. In The Design of Information Systems
for Human Beings. (K. P. Jones and H. Taylor, eds.) pp. 49-56. London: ASLIB.

Miller, L. A. and Thomas, J. C. (1976) Behavioral issues in the use of interactive systems.
Yorktown Heights, NY: IBM Research Report (RC 6326).

Oddy, R. N. (1977) Information retrieval through man-machine dialogue. Journal of
Documentation 33, 1-14. '

Wirth, N. (1981) A personal computer for the software engineer. Proceedings of the 5th
International Conference on Software Engineering, San Diego.

Wirth, N. (1982) Programming in Modula-2. Berlin, Heidelberg: Springer-Verlag.

Zloof, M. M. (1975) Query by example. Proceedings of the NCC. pp. 431-438. Montvale, NJ:
JAFIPS.

