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ABSTRACT

The Maximum Entropy Principle is a body of statistical theory addressed
to the problem of how to make probability estimates in the face of an
apparent insufficiency of data, without introducing unrealistic indepen-
dence postulates. It is potentially important for the design of ‘probabilistic’
information retrieval systems — systems based on the premise that the
essential task of a retrieval system is to order the items in the search
universe by the estimated probability of their usefulness to the user. The
utility of the maximum entropy principle lies in its capacity for providing
rational probability estimates even in seemingly underdetermined situa-
tions, thus obviating the need for artificial simplifying assumptions. One
possible application of the maximum entropy formalism involves the use of
a request language in which each request term is weighted by the user’s
subjective estimate of its precision in the collection. Other applications are
also possible. Precise maximum entropy calculations are computationally
inefficient under some conditions but the prospects for finding fast
approximations seem good.

1. BACKGROUND

In recent years there has been a growing interest in ‘probabilistic’ and ‘utility-
theoretic’ approaches to the design of document retrieval systems and similar
information search systems. The papers of Tague (1973), Bookstein and Swanson
(1974), Harter (1975), Robertson and Sparck Jones (1976), Salton et al. (1976),
Bookstein and Kraft (1977), van Rijsbergen (1977), Cooper and Maron (1978),
Harper and van Rijsbergen (1978), and van Rijsbergen ef al. (1980) are representa-
tive. A thoughtful review of many of the ideas has been provided by Robertson
(1977a). Under the probabilistic approach it is assumed that the purpose of a search
system is to rank the documents in the collection (or more generally, the items
in the search universe whatever it may be) in decreasing order of their estimated
probability of satisfying the searcher’s need. A probability ranking of this sort
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allows the searcher to examine the items one at a time, likeliest ones first, until
either his need is satisfied or for some other reason he decides to terminate the
search.

The probabilistic approach is based on the so-called ‘Probability Ranking
Principle’ (Cooper, 1976; Robertson, 1977b). As originally stated, this principle —
actually more of a design heuristic than a provable law — asserts that the overall
effectiveness of a retrieval system to its users will be on average the best obtainable
on the basis of the data available to the system if the system’s response to each
request is to rank the documents of the collection for the user in order of decreasing
probability of usefulness to him, where the probability estimates are the best that
can be made on the basis of those data. Counterexamples to this assertion can be
constructed, which is why it cannot be regarded as an absolute principle (Cooper,
1976). Nevertheless it is generally conceded to be a helpful guide and it underlies,
implicitly at least, much of the research in information retrieval that exploits
probability theory in a nonsuperficial way.

Conceptually the probabilistic approach is immensely appealing because, with the
help of the probability ranking principle, it succeeds in reducing most of the theory
of information searching to a problem in probability estimation. For instance, the
question of what the request language should be like reduces to a question of which
probabilistic clues to elicit from the user as a basis for making probability-of-
usefulness estimates. Similarly the problem of how to index the items to be searched
reduces to the challenge of providing the most helpful data possible for the
estimation of these same probabilities. And the choice of retrieval rule — that is, the
strategy for ordering the output on the basis of the request, the indexing, and so on
— becomes a matter of finding the most appropriate probability estimation formula
for exploiting the available clues.

On the other hand, the usefulness of probabilistic analysis in information retrieval
has been hindered by an apparent technical obstacle having to do with what we shall
call ‘underdetermination’. Simply described, the difficulty is that usually too few
probabilistic data are available to allow probability-of-usefulness estimates to be
made in a straightforward way using only the classical calculus of probabilities. The
challenge is a serious one. The problem of underdetermination, if not met, would in
many situations force the information retrieval theorist either to resort to unrealistic
independence assumptions or to abandon the probabilistic approach altogether.

In what follows we wish to propose and discuss a theoretical solution to the
problem of underdetermination and to illustrate its application. Qur proposed
solution amounts to the application of a body of statistical theory known as the
Maximum Entropy Principle, also described sometimes as the ‘Maximum Entropy
Formalism’. Techniques closely related to it have already been applied to particular
aspects of the retrieval problem (van Rijsbergen, 1977). Our aim here is to present
the principle in a broader setting as a general tool for making probability-of-
usefulness estimates under a variety of conditions, and even as a formalism capable
of serving in and of itself as the central retrieval strategy of a search system.

2. INDEPENDENCE ASSUMPTIONS

As already suggested, one of the things that makes the task of estimating usefulness
probabilities challenging is the problem of underdetermination — the presence in an
analysis of too many unknowns — so that in practice there are too few data at hand
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to calculate the desired probabilities in a straightforward way. True, it is often
possible to use the classical probability calculus to derive formal expressions for the
probabilities of interest, but in nontrivial cases such formulae typically turn out to
be inapplicable because they involve quantities whose values cannot all be
determined from available data. This is hardly surprising, for when one is concerned
in the analysis not only with the event that a given document will be found useful,
but also with N other events associated with the document properties mentioned in
an N-element request, then one has to deal with an event space of size 2V+!1, This
number is ordinarily much larger than the number of available pieces of relevant
probabilistic evidence. There are just too many degrees of freedom to allow the
probabilities of interest to be determined directly.

A common response to the problem of underdetermination has been to introduce
special independence assumptions into the theory. One such set of independence
assumptions asserts that (i) all searchable document properties are statistically (i.e.,
stochastically) independent given that a document is in fact useful (or ‘relevant’),
and that (ii) they are also independent given that it is not useful. By invoking strong
independence assumptions such as these it is often possible to determine the desired
usefulness probabilities from available data.

Unfortunately, such assumptions are usually grossly inaccurate. They are apt to
be too simple, too strong, and are sometimes in direct conflict with available data
about term dependencies. As a case in point, the independence postulated by the
assumptions (i) and (ii) just described simply does not exist, even approximately, for
many combinations of clues likely to be encountered in search situations. The reader
can readily convince himself of this by thinking through a few particular examples.
One might under some circumstances be inclined to forgive serious oversimplifica-
tion in particular cases if the assumptions were in some sense correct on the average,
or if they constituted a best guess in some cogent statistical sense, but no
convincing arguments have been advanced showing that the assumptions are
supportable even in this weak sense.

It would appear, then, that arbitrarily adopting special independence assumptions
is not a wholly desirable approach to the problem of obtaining sound probability-of-
usefulness estimates in information search systems. Indeed such assumptions are
usually recognized to be crude even by those who employ them, their use being
justified more or less as a desperation measure. Might there be a way to avoid the
introduction of such artificial independence assumptions entirely?

3. THE MAXIMUM ENTROPY PRINCIPLE

Suppose a probability distribution is known to satisfy certain constraints, but that
these are insufficient to determine it completely. Suppose too that nothing beyond
these constraints is known about the distribution of interest. Some distribution has
to be assumed because practical decisions must be made on the basis of the
probabilities it assigns. What is the most natural distribution to adopt under these
perplexing circumstances?

The Maximum Entropy Principle amounts to an attempt to answer this question.
The principle specifies what has been described as the ‘minimally prejudiced’ or
‘maximally vague’ probability distribution consistent with the known constraints
(Tribus, 1969). It is a method of translating fragmentary probability information
into a complete probability assignment. As such it offers a possible solution to the



102 ' Maximum entropy principle

problem of underdetermination.
* The principle is easy to state. Let the entropy E of a probability distribution
(p1, - -+, px) over an event space containing K mutually exclusive and exhaustive
events be defined by the formula

K
E=— )" pilogpi (1)
i=1

Now suppose that a probability distribution of interest is known only to satisfy a few
miscellaneous relationships (e.g., it might be known that p»=0.3, ps-0.4 ps=0,
etc.) but that these constraints are insufficient to specify it completely. Then the
maximum entropy principle may be stated, roughly and intuitively, as follows:

The minimally prejudiced probability distribution is that which maximizes the
entropy subject to the given constraints (Tribus, 1969, p. 120).

As a guide to practical decision-making this translates into the advice that a
rational way of dealing with partial ignorance about a probability distribution is to
find the distribution of maximal entropy consistent with whatever may be known,
and then to act in accordance with the probabilities derived from it.

The information scientist will naturally associate the entropy formula (1) with the
concept of entropy used in the information theory of Hartley, Shannon and Wiener.
Indeed, one intuitive interpretation of the maximum entropy principle is that it
provides a way of minimizing the information, or surprise value, of the probability
distribution in the information-theoretic sense. It tells how to go about constructing
a set of probabilities in which no information is implicit beyond that already
contained in the known constraints. At one point Shannon himself, in a brief
remark made in connection with the problem of assigning probabilities to English
messages, proposed the use of what is now called the maximum entropy principle by
suggesting that one ‘consider the source with the maximum entropy subject to the
statistical conditions we wish to retain’ (Shannon, 1948). However, most of the
literature on information theory per se has not been specifically concerned with the -
role of entropy in specifying probability distributions, and it would lead to
confusion to think of the maximum entropy principle as part of garden-variety
information theory.

The original and more convincing justification of the maximum entropy principle
predated Shannon’s information theory by several decades. It was given in 1871 by
L. Boltzman in connection with a problem in statistical mechanics (see Jaynes,
1979). Boltzman’s reasoning, translated out of the context of physics and into the
terminology of information retrieval, might be encapsulated somewhat as follows.
One asks: In how many ways could a collection of M documents be partitioned into
K nonoverlapping sets containing respectively Mi, ..., Mk documents? The
answer is the multinomial coefficient .

M!
C= 2
MM . . . Mg! )

Now suppose that certain relationships are known to constrain the numbers



W. S. CooPER AND P. HUIZINGA 103

M,,. . ., Mg, but that these constraints are so weak that there remain many ways of
choosing the K numbers in such a way as to satisfy them. Out of these many possible
distributions, which is most likely to be realized in an M-document collection about
which nothing is known beyond the stated constraints? Boltzman’s answer is
essentially that the most probable distribution is the one that can be realized in the
most ways, i.e., it is the distribution that maximizes the multinomial coefficient C
given by (2), subject to the known constraints.

If M and the M;’s are not too small, the Stirling approximation for factorials
allows (2) to be rewritten (after taking the log of both sides) as

K
LogC= —M ZM’I 3)

To choose Mi, ..., Mk so as to maximize this expression subject to known
constraintsis of course just to maximize the entropy E of the probability distribution
for the associated properties of a randomly drawn document under those
constraints. Hence Boltzman’s reasoning provides a rationale for regarding the
probability distribution of maximum entropy as the best guess that can be made
about what the actual distribution is like, given the lamentable state of partial
ignorance of a guesser who knows nothing beyond the given constraints.
For probabilistic information search systems the maximum entropy principle
supplies a convenient way of combining miscellaneous pieces of input evidence into
- probability-of-usefulness estimates. The various statistical input clues — request
weights, indexing statistics, etc. — are the ‘constraints’ and the maximum entropy
principle specifies the likeliest probability distribution satisfying those constraints.
Once this probability distribution has been computed the desired usefulness
probabilities can be derived from it and the collection ranked in accordance with
them.

4. CONSEQUENCES OF THE PRINCIPLE

To gain a full appreciation of the meaning and power of the maximum entropy
principle it is necessary not only to ponder Boltzman’s reasoning but also to become
acquainted with some of the other supporting considerations. An excellent historical
review of these has been provided by Jaynes (1979). In addition it is helpful to
become familiar with a few of the principle’s particular consequences. The following
are illustrative.

1. The maximum entropy principle subsumes the principle of indifference. Jacob
Bernoulli’s ‘Principle of Indifference’ (also sometimes called the ‘Principle of
Insufficient Reason’) asserts that if one knows of no evidence bearing on the
question of which of two complementary events is more probable than the
other, then both events should be assigned a probability of 0.5, this being the
only honest way to describe one’s state of ignorance. In the absence of any
constraints whatever, the maximum entropy principle leads to the same result,
since —(0.5 log 0.5+0.5 log 0.5) exceeds —(p log p)+(1—p) log (1— p) when-
ever p#0.5. In the general case of n mutually exclusive and exhaustive events,
both the principle of indifference and the maximum entropy principle assign
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the events equal probabilities of 1/n when no evidence to the contrary can be
brought to bear.

In the absence of dependency-inducing constraints, the maximum entropy
principle makes events statistically independent. For instance, it is readily
verified that if the only known constraints are P(4)=0.5 and P(B)=0.4, then
in the distribution of maximum entropy P(A,B) will be assigned the value
0.5%x0.4=0.2, making A and B independent. Figure 1 displays this distribution
in the form of a Venn diagram. The reader might wish to check with a pocket
calculator that the probabilities in the diagram cannot be changed without either
lowering the entropy of the distribution or violating the constraints P(A4)=0.5
and P(B)=0.4.

0.3

Fic. 1. Venn diagram displaying the probability distribution of maximum entropy
satisfying the constraints P(4)=0.5 and P(B)=0.4. The two events turn out to
be statistically independent in this distribution

More generally, the maximum entropy principle will tend to preserve as much

independence overall as the constraints allow. As I. J. Good has remarked, ‘in
some sense it (the m.e.p.) pulls out the hypothesis in which the amount of inde-
pendence is as large as possible’ (1963). This then is how the principle removes
the need for special independence postulates or other artificial simplifying
assumptions. The maximum entropy formalism can be viewed as supplementing
the available empirical data with what amounts to a single, residual, highly
generalized, assumption of the greatest degree of independence consistent with
the known constraints.
The maximum entropy principle gives rise to a mutual reinforcement effect
whereby individually weak pieces of evidence are combined into stronger
composite evidence. This property, which is crucially important for the search
system application, is best explained by way of an example. Suppose the
probability of the event U that a randomly drawn document will be useful to the
requestor is P(U)=0.1; that is, it is known that one tenth of the collection is
responsive to the information need. But when it is learned that a randomly
selected document has a certain property A, its probability of usefulness goes up
to P(U/A)=0.3, i.e., one’s estimate of its usefulness probability would triple
upon learning that it has property A. Similarly for a second property B,
P(U/B)=0.3. For concreteness assume further that one tenth of the collection
has property A, one tenth has B, and the two attributes are statistically inde-
pendent in it so that P(4)=P(B)=P(A/B)=P(B/A)=0.1. Nothing beyond
these few facts is known, we shall suppose.

The distribution of maximum entropy satisfying these conditions is shown in
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Figure 2. The reader can easily check that this distribution does indeed fulfill
all the constraints, and with a little more work it can also be verified that it is
the highest-entropy distribution capable of doing so {(c.f. Appendix). Now the
value of P(U/A,B) in this distribution is 0.67. Thus, while learning that a
randomly drawn document has property A would triple one’s estimate of its
probability of usefulness from 0.1 to 0.3, and the same would be true for B,
learning that the document has both properties A and B should according to the
maximum entropy principle increase one’s estimate from 0.1 to 0.67, a much
larger factor. Thus the probability-enlarging effect of the two clues taken
together is, according to the principle, much greater than that of either clue in
isolation, as seems reasonable. It is this reinforcement phenomenon that allows
the principle to be used to combine many pieces of interacting evidence into a
single probability-of-usefulness estimate.

Fic. 2. The probability distribution of maximum entropy satisfying certain
known constraints (see text). There is a ‘reinforcement’ effect in that P(U/A,B)
turns out to be larger than either P(U/A) or P(U/B)

4. The reinforcement effect is sensitive to statistical dependencies among clues.
For instance, if the properties A and B of the foregoing example had not been
independent but instead highly correlated — say, P(A/B)=P(B/A)=0.9
rather than 0.1 — the maximum entropy computation would have yielded the
result that P(U/A,B) is only 0.32. The probability of usefulness inferred from
the presence of both favorable clues is in this case only barely greater than that
deducible from just one, for the news that a document has the second property
is unsurprising when it is known already that it has the first. Because maximum
entropy results are well behaved in this respect they offer a basis for the
exploitation of descriptor co-occurrence data and other collection statistics, and
more generally, for any scheme involving the construction of a retrieval ranking
on the basis of a number of different and not necessarily independent clues.

5. APPLICATIONS

To illustrate the application of the maximum entropy principle to search system
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design we consider first the case of a ‘weighted request’ system in which each
document is indexed with a set of unweighted descriptors and each request consists
of a set of weighted descriptors drawn from the same indexing/requesting
vocabulary. The numeric weight associated with a given term in the request is, we
shall suppose, to be interpreted as the user’s subjective estimate of the precision of
that term — that is, of the proportion of documents bearing the term that would be
found useful. Thus if a term A were to appear in a request with weight 0.3, that
value would be interpreted as a guess by the requestor that around 30% of the
documents indexed by A would be relevant to his need (more formally, that
P(U/A)=0.3). Various interactive aids might be used to help users make such
estimates more accurately, but these will not be discussed here.

Now suppose a request of form ‘A:0.3, B:0.3’ is received by the system, signifying
that the user guesses the term precisions of both term A and term B to be around
30%. Assume that it is known from the indexing statistics that A and B each index
10% of the collection, and that 1% of it is indexed jointly by both of them. Suppose
too that it is known or estimated that the proportion of useful documents
in the collection does not exceed 10%. The probability distribution of
maximum entropy satisfying all these constraints was determined earlier and is
shown in Figure 2. From that figure it is readily computed that P(U/A,B)=0.67,
P(U/A,B)=P(U/A,B)=0.26, and P(U/A,B)=0.06. The probability ranking of
the collection produced in response to this request therefore places all documents
bearing both A and B in the top rank with an estimated probability of usefulness of
0.67, all documents with only one of the two terms next with a probability of 0.26,
and the remainder of the collection at the bottom of the ranking with a usefulness
probability of only 0.06.

The treatment of requests containing more than two terms is an obvious extension
of this example. As many term co-occurrence data as are conveniently available can
be used in such a maximum entropy computation. For instance, if indexing statistics
are readily obtainable on the frequency of posting of any given request term, and
also on the joint posting frequency of any pair of request terms, but to supply the
joint posting frequency for any triple (or quadruple, etc.) of terms is deemed too
cumbersome or not worthwhile, then the maximum entropy principle can be applied
using as constraints only the data pertaining to single terms and term pairs. In this
way accuracy of estimate can, to whatever extent may be desired, be traded off for
computational simplicity.

The request weights need not necessarlly be interpreted as user’s subjective
estimates of term precisions as in the example just discussed. Possible alternative
interpretations of request weights that might be worth considering include the user’s
subjective estimate of the probability increase factor P(U/A)/P(U), and the
estimated term recall P(A/U). Indeed, any probabilistically interpretable quantity
which in the presence of other available input information determines the value of
the joint probability P(A,U) will do. Estimates of these and other relevant input
quantities need not necessarily be subjective estimates by humans; they might
instead be statistical estimates based on past experience in other systems, experience
with past requests in the present system, or user feedback about preliminary output
offered in response to the current request.

In systems receiving sets of unweighted terms as requests, it might be effective to
employ a maximum entropy computation as though some standard weight with an
associated standard interpretation were attached to all of the request terms, thus
treating the unweighted requests as degenerate forms of weighted requests in which
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the weights are all assumed to be alike. Under this arrangement the benefit of the
user’s judgement about the magnitudes of the probabilities in question would be
lost, but the indexing statistics about term breadths and co-occurrences in the
collection would still be exploited to improve the ranking over what would be
obtainable from, say, a simple coordination-level retrieval rule using the same
unweighted requests. It has been suggested that some of the advantages of a Boolean
request language may be obtainable in this way without imposing the complexities of
Boolean logic on casual users (Cooper, 1981).

Other sorts of maximum entropy systems might deal in very different kinds of
probabilistic clues. Specifically, corresponding to the foregoing schemes involving
probabilistically interpreted request weights, there are entirely analogous schemes of
probabilistically interpreted document index term weights and ways of exploiting
them via maximum entropy computations. It is even possible to construct a ‘unified’
probabilistic theory of retrieval involving both requestors’ probability estimates for
events involving document properties and document indexers’ probability estimates
for events involving information need properties, all such clues being combined into
probability-of-usefulness estimates via a maximum entropy calculation. A unified
theory of this sort has been proposed elsewhere by Robertson ef al. (1982). The
essential point here is that the maximum entropy principle will always be capable of
serving as the probability estimation technique so long as the available data can be
interpreted as a series of constraints on a probability distribution over some event
space involving the event U and a family of other events associated with document
and/or information need properties.

6. COMPUTATIONAL CONSIDERATIONS

It should be clear by now that the maximum entropy principle is flexible enough to
serve, in theory at least, as the inductive engine for any of a large class of prob-
abilistic search systems. There remains, however, the question of computational
feasibility.

Computational methods for calculating maximum entropy distributions are well
known (see, for example, Gokhale and Kullback, 1978). A number of them have
been implemented computationally, and a few such programs are even available
commercially. The methods in present use are iterative and fall into two categories.
The first are of the iterative scaling type. Such algorithms proceed from an initial
distribution, which need not satisfy any of the given constraints, and perform a
series of iterations each of which adjusts the distribution so that it satisfies one of
the constraints. The adjustments of one iteration may undo the work of another, but
the algorithm eventually converges to the distribution of maximum entropy. The
Deming-Stephan algorithm (Ireland and Kullback, 1968) is of this type.

The other kind of iterative solution exploits the techniques of numerical analysis.
One such algorithm is the Newton-Raphson iteration procedure, which searches for
values of certain parameters (Lagrange multipliers) from which the distribution of
maximum entropy can be calculated. Alhassid et al. (1978) describe a program based
on such an algorithm, and offer to make a listing of their program together with
flow charts and a user’s guide available for free to interested researchers. The
‘geometric programming’ approach (Beightler and Phillips, 1976; Avriel, 1980)
suggests similar algorithms.

The iterative techniques generally converge quickly when the event space and
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number of constraints are small, but computation time goes up rapidly as these grow '
larger. Experience with these iterative programs suggests that searches involving the
manipulation of only a few descriptors (less than five, say) could probably be
processed within a second or so with reasonable accuracy, assuming careful pro-
gramming for a fast computer. Somewhat more complex searches could presumably
be handled quickly if not all of the collection statistics were used (if, say, only single
attribute probabilities and pair-wise joint probabilities were exploited). But for
searches involving, say, ten or more information need or document properties,
search times measured in minutes rather than seconds are to be expected. Thus if we
assume that users of future on-line systems will be willing to wait no more than a few
seconds for their output, the standard iterative approach seems viable for searches
involving few clues but not for searches involving many.

Searches involving many clues call for measures which drastlcally reduce
computation time while still retaining an acceptable degree of accuracy. Various
tricks might be contemplated. Here we shall content ourselves with a brief discussion
of the uses of the especially versatile concept of a product approximation (Lewis,
1959). A product approximation is a way of approximating higher order joint
probabilities rapidly by taking products of lower order probabilities. For example,
the formula

P(U, A1, A2, A3, As) = P(A1, U)P(A2/ U)P(A3/U)P(A4/U) @

is a product approximation of a 5-event joint probability in terms of pair-wise joint
and conditional probabilities. By replacing events with their complements, the
formula can be made to yield a probability distribution over the entire 32-element
event space generated by U, 41, A2, A3, and A4. Similarly

P(U’Al, R ,AIZ) zP("lly R 9A4, U)P(AS’ . ,AS/U)
P4y, . . . ,An/U) &)

is one of the product approximations of a 13-ary joint probability in terms of 5-ary
joint probabilities. The formula

P(U, A, . . .,An) & P(Ay, Az, U)YP(A3/ A2, U)P(As/As, U)
.P(A12/A11, U) ©)

is one of the ways of approximating a 13-ary joint probability in terms of 3-ary joint
probability data; others may be obtained from it by lowering the subscript on any
event to the right of a slash.

Lewis proved that a product approximation formula yields a distribution that has
maximal entropy relative to the probability data appearing in it. In other words, the
only kind of error introduced by approximation formulae such as Egs. (4)-(6) is the
kind produced by not using all of the available collection statistics. Lewis also
provided a remarkable way of telling, without knowledge of the true maximum
entropy distribution, which product approximation formula yields the best
approximation to the true distribution in a plausible information-theoretic sense of
‘best’. Roughly speaking, the best product approximation is the one in which there is
the greatest tendency for strongly dependent events to be linked together within
individual probability expressions that are factors in the product. Using Lewis’
method one can custom-design a product approximation formula to a request in
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such a way as to take into account just the dependencies that matter the most among
the request clues.

In circumstances where product approximations are too crude to be relied upon,
their use can profitably be combined with other approaches. One way is to use
product approximations as starting values to speed up a standard iterative process.
To illustrate, Eq. (4) could be used to obtain, using term-precision estimates
obtained from a four-element request, an initial distribution which would then be
refined by an iterative process; the result would be an accurate estimate of
P(U, A, A2, A3, As) and hence of P(U/A;, Az, Az, As). Another way of exploiting
product approximations is to use them as a way of breaking down the processing of
long requests into shorter chunks. Suppose for instance that the standard iterative
procedure would be out of the question for 12-clue searches but is rapid for 4-clue
searches. Then a 12-clue computation could be broken down into three 4-element
parts, each part handled iteratively in the standard way, and the results recombined
using Eq. (5). If some attempt were made to choose the 4-element sets in such a way
as to avoid putting strongly dependent clues in different sets, the resulting estimates
should be accurate enough for practical purposes.

Carrying the idea a step further, a I12-element search could if necessary be
processed using only 3-ary joint probability data by applying formula (6) or a
variant thereof. Use of (6) is especially attractive computationally because there is a
rapid non-iterative solution to the problem of determining from weighted request or
index term data the maximum entropy distribution over an event space generated by
just three events. The details are provided in the Appendix. Under this scheme the
standard iterative process would be eliminated altogether, yet thanks to Lewis’
method of selecting the best approximation the most important 3-way interactions
could still be taken into account.

Evidently then the problem of searches involving many clues can be met by
elaborating on the approach of choosing a product approximation formula which
captures as many as possible of the stronger dependencies — that is to say, which
takes into account as high a degree of clue interaction as there is time to deal with.
Alternatives to the product approximation approach are possible, and of course
such routine programming techniques as screening and preprocessing can be
brought to bear in various ways. We conclude that the prospect of basing a practical
search algorithm on maximum entropy computations is far from hopeless, and that
with a little ingenuity rough but tolerable accuracy of estimation at on-line speeds is
probably attainable.

7. CONCLUDING REMARKS

The maximum entropy principle is still an object of controversy, presenting
philosophical difficulties to statisticians of the traditional frequentist school. Some
fine points could also be raised about the particular way in which the principle has
been applied here, which is admittedly crude in some respects. On the other hand,
many of the objections commonly raised against the principle and its applications
stem mainly from ignorance and dissolve when it is understood in greater depth.
Moreover, a substantial body of successful experience gained in applying the
method in such diverse fields as physics, geology, and quality control now supports
it. It would appear to provide a sound and practical answer to certain heretofore
severe theoretical obstacles to rational search system design, especially the problem
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of underdetermination and the challenge of combining miscellaneous probabilistic
clues into rational probability-of-usefulness estimates.

APPENDIX .
A Maximum Entropy Formula for Combining the Evidence of Two Retrieval Clues

In the special case of an event space generated by only three properties there is an exact non-
iterative method for determining the probability distribution of maximum entropy provided
enough data are available to leave only one degree of freedom (Good, 1963). For example,
for search systems accepting precision-weighted requests this means that for any 2-term request
involving terms A and B, there is a closed formula for P(U/A,B) using input estimates for
P(U), P(A), P(B), P(A,B), P(U/A), and P(U/B). Notice that with the help of the identity
P(U,A)=P(U/A) P(A) and the similar identity for B, this input data can be transformed into
the simpler set of values P(U), P(4), P(B), P(A,B), P(U,A), and P(U,B). We wish to find
P(U,A,B), from which P(U/A,B) will be immediately obtainable by dividing by P(4,B).
Adopting subscripts expressed in the binary number system, let poo=P(U,A,B),
po1=P(UA,B), - -, pni=P(U,A,B). It is required to find values for these probabilities
111

for which — L pi log p; is maximal and the input constraints are satisfied. Let x=p;,.

Then all the probabllmes of interest can be expressed in terms of x and the known input data
as follows:

Pui=x (7a)
Puo=P(U,A)—x (7b)
pioi=P(U,B)—x (70)
Pioo=P(U)—P(U,A)—P(U,B) +x (7d)
pPon=P(A,B)—x (7e)
Poo=P(A)—P(U,A)—P(A,B) +x (79
Poor=P(B)—P(U,B)—P(A,B)+x (7g)
Poo=1—P(U)y—P(A)- P(B)+P(U,A)+P(U,B)+ P(A,B)—x (Th)

111
Setting the first derivative of — Z ;i log p; with respect to x equal to 0 and simplifying, one
=000
eventually obtains a cubic equation of the form

X+ @+ ax+a =0. 8)

Letting g be the probability expression to which x is added or from which it is subtracted to
get pj, in Egs. (7a-h), the constants in Eq. (8) can be written

a2 = go104o01 + q100q001 + q1009010 — Go119000 — G1019000 — 1019011 — G110G000 — G1109011 — 1104101
= 10090104001 *+ q10190119000 + g11090119000 + G110G101G000 + G110G 1019011
Qo = q110410190114000

Equation (8) is readily soluble for x by standard analytic methods. Computer and pocket
calculator programs for extracting the roots of cubic equations are widely available. The
appropriate (positive, real) root of Eq. (8) is the desired maximum entropy value for
p1=P(U,A,B). The values of other probability expressions, in particular conditional
probabilities of form P(A/U,B) for use in Eq. (6), are obtainable from this value with the
help of appropriate members of Eqs. (7a-h).

‘Some examples of maximum entropy estimates are shown in Table 1. The examples may be
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Table 1. Examples of maximum entropy estimates

Prior Indexing statistics Request weights Ranking
probability coefficient
PU) P(A) P(B) P(A,B) P(U/A) P(U/B) P(U/A,B)
0.1 0.1 0.1 0.01 0.3 0.3 0.67

0.1 0.1 0.1 0.09 0.3 0.3 0.32

0.1 0.1 0.1 0.001 0.3 0.3 0.77

0.1 0.1 0.2 0.02 0.3 0.3 0.71

0.1 0.1 0.1 0.01 0.3 0.05 0.17

0.001 0.0 0.005 0.0006 0.025 0.01 0.07

interpreted as the probabilities that would be assigned in response to a 2-clue precision-
weighted request to documents possessing both clue properties. The first two rows correspond
to two situations described earlier as illustrations of consequences [3] and [4] of the maximum
entropy principle.
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