Information Technology: Research and Development (1982), 1 (113-129)
© 1982 Butterworths

GOS: A PACKAGE FOR MAKING CATALOGUES

M. F. PORTER

Department of Earth Sciences, University of Cambridge, Downing Street,
Cambridge CB2 3EQ, England

(Received 14 August 1981, revised 17 November 1981)

ABSTRACT

GOS is a program package for creating and manipulating catalogues by
computer. It was designed for museum data processing, but could equally
be used with bibliographic data. It achieves great power by its ability to
manipulate general tree structures of fields, rather than the linear lists of
fields of the MARC system. This paper gives a brief history and overview
of the package, together with examples of its use.

GOS (Porter, 1980a, b, c) is a program package for use in making catalogues by
computer. Within this particular area it manages to attain considerable generality
and versatility, and it can in fact be used to build almost any kind of catalogue, for
example a dictionary, or a herbarium, or a directory of names and addresses, or a
conventional library catalogue. But it was for museum catalogues that the package
was originally written, and at present its main use is in cataloguing museum objects.

The writing of GOS began at the Sedgwick Museum, Cambridge. Here up to 1977
a series of research projects was undertaken which involved the computerization of
the catalogue of the Sedgwick Museum and of the various activities associated with
it, and the general study of museum data recording with the intention of standardiz-
ing, at some level, actual recording practice (Porter ef al., 1977). In 1978 the newly
formed Museum Documentation Association continued this work for the benefit of
the museum community in the UK as a whole. A full account of more recent
developments in this area both in the UK and other countries may be found in
Roberts and Light (1980). GOS was written jointly by Dr Jonathan Cutbill, now at
the National Maritime Museum, Greenwich, and the present author. It was written
in short bursts over a number of years, so that it is difficult to estimate the total
amount of work that went into it, but it took in all not more than about four man
years to bring into its present state. It is distributed by the Museum Documentation
Association, at Duxford Airfield, Duxford, Cambridgeshire, to whom all enquiries
should be addressed. It consists currently of about 14000 lines of source code,
divided into over 80 separate modules. It is written throughout in BCPL, and
considerable emphasis has been placed on portability.

The initial emphasis on museum catalogues was salutary in designing GOS,
because museum data are very varied in nature, and often exceedingly complex. If

114 GOS: a package for making catalogues

GOS is capable of handling museum catalogues to the very exacting standards
demanded by museum curators, then it is probably capable of handling any other
kind of catalogue as well. Museum data tend to be complex (more complex for
example than bibliographic data), and for a number of reasons. In the first place,
almost any kind of object can find its way into a museum, whether it is an electron
microscope photograph of a fossil coccolith, or an aeroplane from the Second
World War. The information that one may wish to record about these objects-can
therefore be very varied. Again, museum objects have different degrees of
importance, and the amount of information that one may wish to record about a
single object is very variable. It may be a single line of information, or it may run to
several pages. Another important point is that a museum object may be structurally
very complex, and one may want the corresponding data description to reflect this.
For example the object may be a set of surgical instruments in a box. One may wish
to record the various materials from which they are made, the methods of manu-
facture, the names of the manufacturers, and the inscriptions on the instruments,
and to keep clear the precise relation between the items of data about the manu-
facturing, and the instruments to which the data refer. Finally, there are no settled
conventions that the museum curator can readily refer to which will tell him how
precisely his data are to be recorded. There is no single guide to which he can turn in
the way that a librarian can turn to Anglo-American Cataloguing Rules (Gorman
and Winkler, 1980) for example.

In designing GOS therefore we had fo produce a set of programs with a
considerable degree of generality. GOS would have to handlg very large and very
small records, complex records and simple ones; and we could not make any pre-
suppositions about the maximum size or degree of complexity of the records it
would be handling, or anything else concerned with the general structure of the data.

The essential point about this generality is revealed in a description of the
structure of records which are handled by GOS. Each record of information in GOS
is made up of a collection of separate fields. Records in the MARC Bibliographic
System (UK Marc Manual, 1980) have a similar structure. In a MARC record there
is a directory of fields used, and a set of fields which give a first level breakdown of
the data in the record. Within each field, strings of text may be separated by various
markers which effectively supply a second level breakdown of the data in the fields.
MARC records can therefore be said, very roughly, to have a two-level structure. In
GOS there is provision for record structures which go arbitrarily deep, so that N-
level structures may be created, N being as large as we please. At first sight this may
seem to be an over generous provision, but in fact it is enormously advantageous. It
means that many details of relationships between items of data that are either left
vague or established by some unnatural convention in a system which has a strictly
limited number of levels can be established by grouping the items together at a
higher level.

This point is illustrated by the example (admittedly somewhat art1f1c1a1) of the
picture opposite.

The record here is supposed to describe an object. The object is in two parts: a
teapot with a lid. Each part has recorded the materials from which it is made and the
design which is on it, and each material and design item of data has two biblio-
graphic references associated with it. Thus the fact that the lid is made of pewter is
supported by two REF headings under ‘pewter’, and similarly for the other items.
The REF headings themselves will have their own data with their own internal
structure, but we will not concern ourselves that far. The point is that the relation-

M. F. PORTER 115

ships between these items of data, which are so easily represented in a hierarchical
structure, would inevitably be lost or obscured if the whole was forced into a hnear
structure, or any structure with too few levels.

OBIJECT
PART PART
‘teapot’ ‘lid’
MATERIALS DESIGN MATERIALS DESIGN
‘pot’ ‘landscape’ ‘pewter’ ‘geometric patterns’

VANWANVANVAN

EF REF REF REF REF REF REF REF

The structure in this example is of course a tree structure, and each record handled
by GOS in fact consists of a tree structure of fields. It is arranged that the items of
actual data, which can be of various types (strings, integers, reals . . .), occur at
the ends, or leaf nodes of the trees, and that the higher levels in each tree simply
represent groupings of the lower level components.

The example tree structure has a concept name at each node, i.e., OBJECT,
PART, MATERIALS, DESIGN, REF. (They will be called concepts here, although
in GOS itself they are referred to by the less suggestive name of codes.) In the
example the concepts repeat. Thus PART, MATERIALS, DESIGN and REF all
occur more than once. Furthermore REF repeats in more than one way: because it
comes under PART which itself repeats; because it comes both under MATERIALS
and under DESIGN; and because it repeats under MATERIALS and under
DESIGN. Generally, in GOS any concept, so long as it can appear at some point in
the structure once, may repeat, and may repeat indefinitely often.

Another general feature of GOS is that no upper limits are imposed on the size of
fields, or on the total number of different fields in a record, or on the total number
of concepts that a record may utilize, and so on. Of course there will be upper limits
in practice, dictated for example by limitations of hardware. Thus a GOS record
must fit into the available computer store in order to be readable, so this gives one
upper limit to the size of a record. In fact on the IBM 370/165 at Cambridge, the
implementation of GOS is such that a record must be less than 64K bytes in size,
which seems large enough for all practical purposes. The important point here
however is that the upper limits are dictated by what is a practicable implementation

116 GOS: a package for making catalogues

of GOS, and not as the result of a desire to take short cuts in writing the software.

GOS records are collected together into files, and a collection of records in a file
will usually have their structure described by some format. The use of formats is
important in GOS, although we will not go into any details about them here.
Essentially formats define record structure, and a format in GOS corresponds to a
database definition in COBOL, or a database description in IMS, or a relational
definition (or whatever it may be called) in some relational database.

This then is the data which GOS handles, and the question of course remains,
what does GOS do with it? It should perhaps be said at once that GOS is not a Data
Base Management System (DBMS) or an Information Retrieval (IR) System, in the
strict sense in which these terms are nowadays accepted. It is really a system which
enables the user to establish catalogues in machine readable form, and to derive
from them catalogues which he himself can read, on a variety of different output
media, in a variety of different styles, and in particular sorted in a number of
different ways. Within GOS a number of individual programs are provided for
handling data. These programs are called processors, and in fact their total number
is quite small. The real power of GOS comes with the ability of these processors to
make use of a collection of other utilities, called systems, which the processors may
enter rather as a main program can call the members of a subroutine library.

The main processors in GOS are as follows: There is a processor BUILD which
constructs GOS records from a text form of the records, which will typically have
been produced by data preparation staff. There is a processor DISPLAY (more
exactly two processors called DISP and PAG) which prints records out. The
processor KEY generates keys in records for sorting, and there is a SORT/MERGE
capability to process these records. The processor RET retrieves records from a file
which satisfy some retrieval criterion. (This works by simple sequential scanning
down a file.) The processor COMBINE ‘merges’ two files of GOS records together
to form a new one. This provides a very simple and clean way of updating records.
And finally there is a processor EDIT which provides a general purpose editor for
manipulating GOS files.

To explain the use of systems, we will introduce a simple example. Suppose that
we have a GOS record, and in one of its fields is a piece of text. We wish to put the
first character in the field into upper case if it is a letter, and the remaining
characters, when they are letters, into lower case:

JAMES - James
john - John

We will also take it as understood that this is the kind of activity that we are likely to
want to do in GOS. The first important point is that we do not turn operations of
this kind into inbuilt primitive operations in the package. We would regard them as
being at too high a level for that. Instead they are constructed out of simpler
primitives. One system in GOS is called the ANEL system, and it enables us to
analyse string elements. While ANEL is in use, a cursor points to a character in the
string, initially the first:

‘JOhN’
t

The primitive command C forces the character at the cursor into upper case (C

M. F. PORTER 117

stands for ‘capital’) and moves the cursor right by one:

after C: ‘J?hN’ :

S forces the character at the cursor into lower case (S stands for ‘small’) and moves
the cursor right by one:

after CS: ‘Jo?N’

So to force the flrst character to upper case and the remainder to lower case we need
todo

CSSS. ..

We cannot of course say how many S commands we will need, since this will depend
on the length of the string, but we can force S to be repeated until the cursor falls off
the end of the string by writing:

C REPEAT(S)
We can indicate that this belongs to the ANEL system by writing:
+ ANEL(C REPEAT(S))

— and this is in fact how in GOS a command is written to force a string into the
form of a capital followed by small letters. Any structure belonging to the ANEL
system is called an anel.

Now we may wish to call an anel up from any part of the package. With the
example anel given above, we might want to use it as a tidying up process applicable
to various fields when they are first entered to the system, with the intention that the
people doing the data preparation may ignore distinctions of case in certain fields,
and the use of upper and lower case is then sorted out by the appropriate anel. Thus
we could want to use the anel in BUILD. Again it might be felt appropriate to keep
certain fields in the machine in just one case (upper case only say), and then on
certain occasions to print them in the form capital followed by smalls for cosmetic
purposes. Thus we might want to use the anel in DISPLAY. Or we might force
words into the form capital followed by smalls when generating keys for sorting, this
form of keyword being obviously very suitable with certain indexes, and so we
mlght want to use the anel in KEY. And of course we would like to have the anel
available in EDIT, since this is a general purpose program from which we want all
facilities to be available.

The essential point is that we want the capability provided by the anel to be
available to us at all points in the system, and also we want it to be made available in
the same way. There are in fact a large number of systems in GOS (over 35), and
they perform a wide variety of tasks from doing real and integer arithmetic to data
scrambling for security purposes and mapping out the store utilization in the
machine. Two systems stand out as particularly important. One is the ANEL system
which we have just mentioned, and which provides a powerful string processing

118 GOS: a package for making catalogues

capability. The other is the SCAN system, which effectively supplies the mechanism
for moving around a GOS record so as to look at and operate on its different fields.

In the example, the anel only employed three components; C, REPEAT and S,
with a correspondingly simple effect. But it is possible to write quite complex anels,
and their power is greatly enhanced by the ability to switch from the anel system into
any other system. Thus it is possible to write anels to analyse taxonomic names, grid
references, latitude/longitude measurements, and to convert roman numbers to
arabic and arabic numbers to roman.

Each of the GOS processors runs under the control of a processor specification,
or spec. The spec effectively gives a list of options, or steering lines, which define the
way in which the processor is to operate. Within the spec there may be various calls
to other systems, so that for example

. . . +ANEL(C REPEAT(S)). . .

could be part of a spec which calls up the ANEL system. In GOS the processors can
be driven by specs which run to several pages in length, so that it is possible for the
operation of a particular processor to be made very elaborate.

Now comes a significant point: as far as GOS is concerned, the specs themselves
are just a series of GOS records. For example, the anel given above corresponds to a
record with very roughly this structure:

+ANEL
C REPEAT
S

Here, C, REPEAT and S are the concept names; C and S are at leaf nodes in the
record, and the REPEAT and + ANEL indicate higher groupings. Effectively what
has happened is that the very general record structure offered by GOS has been used
not only to accommodate the various data records handied by GOS, but also the
various GOS control structures as well. The advantages of doing this are various. It
cuts down the amount of code in the package, since the same basic procedures will
handle all the different data forms within it. This is an enormous advantage. The
smaller the code, the easier it is to debug, maintain, document and transport. In
fact, in view of the many facilities it offers, GOS is surprisingly small, and can be
implemented on minicomputers fairly comfortably. Another advantage is that the
user of the package has much less to learn, since what he knows about GOS records
for catalogue data serves equally well when he comes to learn about writing the
control structures. This is again important, since the GOS manual is.a sizeable
object, and the initial learning effort is inevitably quite high. A third advantage is
that data from GOS catalogue records can be mixed in with the control structures in
a natural way. Thus an instruction to insert a piece of data at a particular point in a
GOS record can be represented by making the piece of data to be inserted a part of

M. F. PORTER 119

the GOS command to do the insert, the whole command being a simple GOS record,
or part of a record.

We have said earlier that processor specs can often be quite substantial in size,
although they do not of course need to be. Often, writing a processor spec requires
the care and skills that go with writing a computer program, and many of the
structures for driving GOS exhibit programming language characteristics. So for
example the anel structures, which give string processing capabilities, are in many
ways analogous to patterns in SNOBOL4 (Griswold et al., 1978). The organization

- of the flow of program control through the anels however makes them much closer
relatives of the expressions in Icon (Griswold ef al., 1979), the more recent language
designed by Griswold and others. GOS makes use of implicit signals S and F (success
and failure) to communicate information which determines what to do next. For
example, commands S and REPEAT in the anel system yield signals S or F as
follows:

S yields signal S if the cursor is not at the end of the string
or F if the cursor is at the end of the string

REPEAT (e), where ¢ is some expression, causes € to be repeated
until e yields F, and then REPEAT (e) itself yields S.

So the flow of control of the anel expression C REPEAT(S) can be represented as
follows:

S F
C- S stop (with result S)
F
S
stop
(with result F)

Note that the expression as a whole gives either result F (when the expression C gives
F, which happens with a null string) or result S. This distinction can be utilized at an
outer level if necessary. In GOS this use of signals is not confined only to the anel
system, but in fact extends over the entire package, and it has proved to be extremely
effective.

From its first conception, it was intended that GOS should be a portable piece of
software, and considerable effort went into trying to minimize the amount of work
that would need to be done in implementing it on a new computer. The choice of
language, BCPL (Richards and Whitby Strevens, 1979), was in part motivated by
the desire for portability. The language itself is highly portable between machines, a
feature which is in fact one of its principal design aims. Apart from this, BCPL will
generate very good object code, and is very suitable for non-numerical applications.
This made it an appropriate programming language for our purposes. Initially we
found considerable resistance to the idea of using BCPL, which came as something
of a surprise. Many people suggested it was inadequately supported, and compared

120 GOS: a package for making catalogues

with such old favourites as COBOL and FORTRAN, quite esoteric. We rejected
these ideas, and I am sure we were wise to do so. BCPL is gradually gaining
respectability, particularly with its ready availability now on mini- and micro-
computers, and the portability of GOS has been demonstrated in practice.

A.3312., C(Cephalaspis (Eucephalaspis) agassizi Lamarck. Middle Cornstones, Lower.
0ld Red Sandstone; Kent Church Hill, Hereford. Pres. Rev. W, Symonds.
Fig'd Stensio, 1932, Cephalaspids Gt, Britain, Brit. Mus. Nat. Hist., p.160, P1.50,
fig.1, as Securiaspis kitchini Stensio, Paratype.

FiG. 1

A high level of portability in GOS is achieved as follows: the machine
dependencies of the package are concentrated in just four of the eighty odd
modules. Within these modules certain primitive GOS procedures need to be defined
in terms of the local BCPL library procedures, suitably enhanced if necessary. One
therefore has to interface the GOS view of the world with the view of the world
suggested by the local runtime system for BCPL. A clear definition of these
primitive GOS procedures is supplied in the form of program comments, together
with hints on how they might be implemented when they are a little tricky. The
distribution tape for GOS contains, as well as the code for the package, a description
of the steps to be taken to set the package up at the new installation, and a
substantial test, which can be replicated to make sure the package is working
correctly.

As well as the implementation on the IBM 370/165 at Cambridge, GOS has been
implemented on five other machines, namely a Computer Automation LSI-4/30
minicomputer running under the TRIPOS operating system, also at the Computer
Laboratory in Cambridge; the IBM 370/168 running under MTS at Newcastle
University; the CDC 7600 at the University of Manchester Regional Computer
Centre; a Hewlett-Packard 21 MX at the Research Laboratory of the British
Museum; and a Cromenco Z-80 based micro at the National Maritime Museum;,
Greenwich.

It will be seen that there have already been three implementations of GOS on
mini- or microcomputers, and in view of the direction that hardware developments
are currently taking, the ability to put GOS on machines in this range would seem to

*key A.3312 *gcode PIS *store d.c.l :

*re*tax +Cephalaspis (+Eucephalaspis) +agassizi Lamarck

*ss*rk Middle Cornstones *comp Lower Old Red Sandstone *loc

Kent Church Hill * Hereford

*oh presented *pers Symonds, W. <Rev.

*re fig'd *a Stensio *d 1932 *t Cephalaspids Gt. Britain

Brit. Mus. (Nat. Hist.) *pp p.16¢ pl. 50 fig. 1 *tax +Securiaspis
+kitchini Stensio *f paratype

*st fig'd * type

#

FIG. 2

be a distinct advantage. The problem of running GOS on a small computer is not
caused by the size of the code, so much as by the potential size of the data one may
wish to handle. This can be problematical in two ways: either the specs to drive the
package may become too large as the user tries to perform increasingly elaborate

M. F. PORTER 121

operations on the d'ata, or the records of data themselves may overflow the capacity
of the machine. Obviously the way around this problem is to keep the applications

*gi
*id
*key
*code
*elem A
*elem=3312
*elem=0
*gcode PIS
*store
*storel d.c.l
*st fig'd
*st type
-*oh
*f
*f1 presented
*pers
*psl Symonds, W
*psd Rev.
*ss
*geogr
*]oc
*locl Kent Church Hill
*loc
*locl Hereford
*strat
*comp
*compl 0ld Red Sandstone
*compd lower
*rk
*rkl Cornstones
*rkd middle)
*re |
*taxon
*tax
*taxs \WCephalaspis\N (\UEucephalaspis\N) \Uagassizi\N Lamarck
*gen Cephalaspis
*sgen Eucephalaspis
*spec agassizi
‘*re
*f
*f1 fig'd
*f
*f1 paratype
*taxon
*tax
*taxs \USecuriaspis kitchini\N Stensio
*gen Securiaspis
*spec kitchini
*ref
*doc
*a
*3] Stensio
*d
*ryear 1932
*t Cephalaspids Gt. Britain Brit. Mus. (Nat. Hist.)
*pp p.16¢ pl. 50 fig. 1

FiG. 3

of GOS simple, and it is not as yet clear Just how much complexity these 1mple-
mentations will really allow.

122 GOS: a package for making catalog'ues'

The practical use of GOS is well illustrated by the project to computerize the
catalogue of the Sedgwick Museum in Cambridge. Figure 1 shows the record for
specimen number A.3312 in the old Sedgwick Museum manual catalogue. A.3312 is
in fact a fossil fish, originally identified as Cephalaspis (Eucephalaspis) agassizi
Lamarck. It was found at Kent Church Hill, Hereford, and came from a band of
rock known as the Middle Cornstones, within the lower part of a larger band, the
Old Red Sandstone, and was presented to the museum by the Rev. W. Symonds.
Later it was used by Stensio in his 1932 publication Cephalaspids of Great Britain as
a paratype in the definition of the new taxon Securiaspis kitchini Stensio. It was also
figured (i.e., illustrated) in the same work. The figure is in Plate 50, Figure 1. A
fossil so used acquires a particular status in the Sedgwick Museum collection, and is
given the status values type and fig’d.

Figure 2 shows how this record may be typed out for input to the BUILD
processor of GOS. The various items of data in Figure 1 have been split up, and
prefixed by a suitable tag, *key, *rk, *pers and so on. A few extra items of data have
been added in this example: the group code PIS (short for Pisces) indicates that the
specimen is a fossil fish, and storage location d.c.l explains where the specimen can
be found in the museum. The status words ‘fig’d’ and ‘type’ have also been
included. A comparison of Figures 1 and 2 shows how closely the data input to
BUILD may be made to mirror the form of the data in a manual system. In
particular, the input data does not need to reflect the elaborate structure which the
GOS record for A.3312 will have when it is established in machine readable form,
although a certain sense of this structure needs to be grasped in typing the record,
in order that the correct tags may be chosen. A certain amount of thoughtful
reorganization during typing will of course be necessary. Thus names must be typed
with surname first followed by a comma and forenames or initials, and with titles
preceded by the character ‘<’. This is as an aid to subsequent sorting and displaying.
Again significant components of taxonomic names must be indicated by a plus sign.

The structure of the GOS record generated by BUILD from this input is given in
Figure 3. Each line represents either a single field of data or a grouping of such
fields, and in the former case the data tag (or concept name) is given on the left,
followed on the right by the actual data. Indentation to the right indicates group
membership, so that the *oh (=ownership history) group on line 13 contains two
data groups indicated by *f and *pers, and the *pers group contains two data fields,
a main keyword part in *psl, and a detail part in *psd. It will be seen that the textual
data of Figure 2 has undergone some readjustment. Thus the *pers data has been
split into two fields at the character ‘<’, the components of the taxonomic names
indicated by the plus signs have been put into special fields indicated by *gen, *sgen
and *spec (i.e., genus, subgenus and species), and the words ‘middle’ and ‘lower’ in
the rock names have been relegated to special fields. BUILD does this work by
interpreting various anels specially designed for the Sedgwick Museum application
of GOS.

From collections of records structured in this way catalogue listings and indexes
may be generated. The total number of records for the Pisces group in the Sedgwick
Museum is just over 4000, and Figure 4 shows the first page of the catalogue for
this collection. A.3312 can be seen at the top. The considerable variation in data
over the records is at once apparent — note in particular the size of record A.3466.
The particular layout here is designed for microfiche output, but Figure 4 was in fact
generated for this paper at A4 size by outputting it on a Diablo printer and then
putting the result through a reducing photocopier. Practicaily any kind of layout is

M. F. PORTER 123

possible, and a facility now exists in the Sedgwick Museum for generating specimen
labels. The records are printed in a rectangular array, possibly reduced in size with a
reducing photocopier, and then sliced up on a guillotine and fitted into the bottom

SedgMus PIS Main Cat 1981 page 1

A.3312 fig'd; type. (PIS) d.c.1
Presented, Symonds, W. {Rev.).
Lower 0ld Red Sandstone, Middle Cornstones; Keat Church Hili, Hereford.
Cephalaspls (Eucephalaspis) agassizi Lamarck.
Fig'd, paratype, Stensio, 1932, Cephalaspids Gt. Britaln Brit. Mus. (Nat. Hist.), p.160 pl. 50 fig.
1, as Securiaspis kitchini Stensio.

4.3313 . fig'd. (PIS) d.c
Presented, Browne, G.F. (Mrs.).
01d Red Sandstone; Reswallie, Forfar, Scotland;
Loweér 0ld Red Sandstone.
Cephalaspis lyelli Agassiz.
Fig'e, Stensio, 1932, Cephalaspids Gt. Britaln Brit. Mus. (Nat. Hist.), p.99 pl. xxxvii fig. 3, as

Cephalaspis pagei Lankester.

A 3314 « {PIS) d.c.1
Cookson Coll.
01d Red Sandstone; Herefordshire.
Cephalaspis lyelli Agassiz. ~
Recorded, Stensio, 1932, Cephalaspids Gt. Britain Brit. Mus. (Nat. Hist.}, p.94%, as Cephalaspis
whitel Stensio.

4.3327 (PIS) d.e.1
01d Red Sandstone; Herefordshire.
Recorded, Stensio, 1932, Cephalaspids Gt. Britain, Brit. Mus, Hat. Hist., p.94, as Cephalaspis whitei
Stensio.

A_3u66 type; fig'd. (PIS) xxviti.s.®4 |

{Schists), Devonian; Lantivit Bay, Cornwall;

Darmouth Slates, Siegenian.)

Described, McCoy, 1851, Ann. Mzg. Kat. Hist., (2} viii p.483, McCoy, 1854, Contrib. Brit. Palaeont.,

p.234, as loophyte Steganodictyum »arterl K'Coy.

Fig'd explained, McCoy, 1955, brit. Pal. Foss. Geol. Mus. Cambridge, Pl, II A figs.d, 4 a, as
Amorphozoa Steganodictyum carieri M'Coy.

Described, Lankester, 1868, 0.7.G.S., xxiv, pp.546-7, (from McCoy's figures) as Fish (allied to the
genus Ceﬂalaagu)

Mentioned, Hinde, 1888, Brit. Foss. Sponges, Mon. Pal. Soc., p.182,

Listed, Woods, 1891, Cat. type Foss. Woodw. Mus., p.167, as szces Ste‘anodictw carteri McCoy.

Recorded, Stensio, 1932, Cephalaspids Gt. Britain, Brit, Mus. Nat. Hist., p.179, as Oemalaspls"
carteri {McCoy).

Identified, Wnite, E.I., as Arthrodire Drepanaspis (2 much distorted fragment of either an arthrodire
or Drepanaspis).

Mentioned, Tarle, 1961, Acta Pal. Polonica, vi, p.370, as {within the genus Drepanaspis).

Holotype, fig'd, Tarlo, 1965, Palaeontclogia Polonica, Ho.15 p.36 pl. viii fig.i, as Drepanaspis
carteri {McCoy).

A. 6006 fig'd; type. (PIS) xxviii.b.1
Presented, Pollexfen, J.H. (Rev.).
0ld Red Sandstone; Orkney;
01d Red Sandstone, Black Devonian Flags; Jrkney:

FiG. 4

of the specimen boxes. Figure 9 shows an example of output in this style. Figure 5
shows a page from the taxonomic index to the Pisces, and the entry for A.3312 can
be found near the bottom of the page. There will be a second entry for this specimen
under the earlier taxonomic name. Figure 6 shows a page from the index for biblio-
graphic references. The entry for the Stensio reference continues from the previous
page, and A.3312 appears at the top. (The misplacing below on the left of ‘p. 116
pl. iii figs. 7-8’ is caused by a data error.) Figure 7 shows a page from the locality
index with the entry for ‘Hereford, Kent Church Hill’. Similarly indexes for strati-
graphy, donors of specimens and museum storage locations may be generated. In
GOS almost any kind of index from the basic data can be generated, and Figure 8
shows a page from an index to the headings used in the locality index. This tells us
for example that ‘Kent Church Hill’ occurs both under ‘Hereford’ and ‘Hereford-
shire’ and this index acts as an essential aid in effective use of the locality index.

124 GOS: a package for making catalogues

SedgMus PIS Tax ind 1981 page 183

Fig'd, {syntypel, Woodward, A.S., 1889, Proc. Geol. Assoc., XI, p.300 pl. III
fig.33, dentition (lower - right). J.5822 xvii.t.b fig'd; type.

(P1S} Scaphodus heteromorphus Woodward
Stonesfield Slate,
Oxford shire
Listed, Woods, 1891, Cat. Type Foss. Woodw. Mus., p.166. J.5822 xvii.t.b fig'd; type.

(PI5) Scicenurus bowerbanki Agassiz
London Clay,
Essex
Sparnodus bowerbanki (Agassiz)
Kent
Sparnodus bowerbanki (Agassiz)

L2192 vii.e.3

o

o

.21193-2119 vil.c.3

{PIS) Scombramphodon crassidens A. S. Woodward
London Clay, .
Kent

o

.21196 vil.e.3
(PIS) Scombrinus macropomus (Agassiz)
London Clay,
Kent

o

.21198-21199 vii.c.3

(PIS) Scyllium angustum (Agassiz ex Mfinster ms)
Senonian,

Baumberge

I

211527 ix.t.f fig'd.

(PIS) Scyllium angustum (Agassiz)
Senonian,

Baumberge
Scyllium angustum (Agassiz ex Minster ms)
Mentioned, ‘Woodward, A.S., 1889, Cat. Foss, Fish Brit. Mus, (Nat. Hist.), part 1,

p.340. 11527 ix.t.f fig'd.

gl

(PIS) Scyllium minutissimum (Winkler)
Barton Beds,
Hampshire
Tooth.

')

. 14069-14071 viii.t.a
.60189-60193 viii.v.122

o

(PIS) Securiaspis kitchini Stensio
Kiddle Cornstones,
Hereford
Fig'd, paratype, Stensio, 1932, Cephalaspids Gt, Britain Brit. Mus. (Nat. Hist.),
p.160 pl. 50 fig. 1. A.3312 d.e.1 fig'd; type.

(PIS) Seriola prisca (Agassiz)
Upper Eocene,
Ttaly €.31438-31439 vii.d.4
C.31449

(PIS) Serramus occipitalis Agassiz
Upper Eocene,
Ttaly
Sparnodus microstomus (Agassiz) €.31425 vii.c.h

FiG. §

SedgMus PIS Doc ind 1981 page 30

{ Stensio, 1932, Cephalaspids Gt, Britain Brit. Mus.
(Nat. Hist.).}
(PIS) Securiaspis kitchini Stensio

Tarlo, 1961, Acta Pal. Polonica, vi.
(P13}

Tarlo, 1961, Acta Palaeontologica Polonica, vi.
{PIS) Rhinopteraspis cornubica MeCoy

Tarlo, 1964, Palseontologia Polonica, 13 p.116 pl.iii
figs.7-8.
(PIS) Pycnosteus obruchevi Tarlo

Tarlo, 1965, Palaeontologia Polonica.
(PIS) Drepanaspis carteri (MeCoy)

Tarlo, 1965, Palaeontologia Polonica, 15 p.78 text-fig.
20A

(PIS) Pycnosteus obruchevi Tarlo

Tawney, 1882, Proc. Camb. Phil., Soc., iv.
(P1S) Lamna elegans Agassiz

{P1S) Myliobates toleapicus Agassiz
(PIS) Otodus obliquus Agassiz

Tawney, E.B., label.
(PIS) Ceratodus n.sp,
{PIS) Ceratodus sp.
{PIS) Ceratodus sp.n.

(PIS) Ceratodus sp.nov.

(PIS) Ceratodus var.n.
(PIS) Ceratodus altus Agassiz

{P1S) Ceratodus sp.n.,var, of altus Agassiz
(P1S) Ceratodus curvus Agassiz?

(PIS) Ceratodus sp.aff. curvus Agassiz
(PIS) Ceratodus daedaleus Agassiz

M. F. PORTER

fig'd, paratype, p.160 pl. 50 fig. 1.

identified, Wnite, E.I., mentioned, p.370.

identified (as original of McCoy's fig.
3), chosen, lectotype, refig'd, part a
p.368 pl. 1.

‘identified, Dineley, fig'd, holotype.

identified, White, E.I., holotype, fig'd,
No.15 p.36 pl. viii fig.1.

identified, Dineley, fig'd, (number
misquoted as H,1,570).

listed, p.150.
listed, p.150.
listed, p.150.

FI1G. 6

125

A.3312 d.c.i fig'd; type.

A.3466 xxviii.s.64 type:
fig'd.

A.6955 xxviii.s.64 fig'd;
type.

H.5170 xxvii.t.1 fig'd; type.

A.3466 xxviii.s 64 type;
fig'd.

H.5170 xxvii.t.1 f1g'd: type.

£.19990 viii.t.127
€. 19991 viii.t.127
C.19989 viii.t.127

17 xix.a.5
1-58352 xx.1142
14 xix.a.5

xix.a.5

xx., 1142

xx. 1142
58342 xx,1142
xx, 1141
xx, 1142
xix.a.5
xx.t.a
xix.a.5
xx. 1141
xx, 1142
xx, 11482
17-58348 xx.1142
-58340 xx.1142
J.58333 xx.1141

8350 xx. 1142 '
J.58354 xx,1142

126 ' GOS: a package for making catalogues

SedgMus PIS .Loc ind 1981 page S0

[Hampshire, Shawford.]

(PIS) Scapanorhynchus subulatus (Agassiz). (Southampton Waterworks new pit}, loc:

1086.

Hampshire, Stubbington.
Bracklesham Beds,
(PIS)
{PIS) Lamna vincenti (Winkler).
{PIS) Myliobatis sp.
(PIS) Odontaspis crassidens (Agassiz).
{PIS) Odontaspis crassidens (Agassiz)?.
(PIS) Odontaspis cuspidata (Agassiz)?.
(PIS) Ddontaspis elegans (Agassiz).

(PIS) Odontaspis macrodon (uaisiz).
(PIS) Raia sp.

Hampshire, Winchester.
Upper Chalk,
(PIS) Ptychodus polygyrus L. Agassiz.
Turonian, N -
{(PIS) Ctenothrissa sp. (By-pass cutting), grid ref:
41/496287.
(PIS) Scapanorhynchus rhaphiodon (Agassiz). (By-p;; cutting), grid ref:
41/496287.
(PIS)} Scapanorhynchus subulatus (Agassiz). {By-pass cutting), grid ref:
41/896287.

Hastings, Hollington.
Wealden,
(PIS) Pisces Hybodus sp.

Hastings, Hollington, Silver Hill.
Wealden,
(PIS)

Hereford, Kent Church Hill.
Middle Cornstones,
(PIS) Securiaspis kitchini Stensio.

Herefordshire.
(PIS) Cephalaspis whitei Stensio.

Devonian,
(PIS) SHPIS Pteraspis sp.

Herefordshire, Aymestry, Mere Hill Wood.
Ludlow,
(PIS) {Quarry at western tip of Mere Hill
HWood - 1 1/2 miles W. of Aymestry).

Herefordshire, Cradley.

Devonian,
(PIS) SMPIS Benneviaspis lankesteri Stensig.

FiG. 7

B. 65564-65565 x.596

C.69603-69604 vii.t.8

C.21357-21359 viif.t.h
C.70787-70791 vii.t.8
C.21317 viii.t.h

C.21318-21319 viii.t.h
€.21321 vili.t.h

€.21336-21340 viii.t.h
C.65622 vii.t.8

C.66404-66406 vii.t.8
T.66304 vii.t.8

B. 20764 x.599

B.91635 4.19

B.91618 %.19

B.91636 4.19
B.53755-53761 xi1i.t.37
B.53922 xifi.t.38

A.3312 d.c.1 fig'd; type.

A.3314 deeat
A.3327 d.c.1

H. 4703 xxviii.c.1

A.59157 xxx.n.25

H.4691 d.c.1

M. F. PORTER

SedgMus PIS Loc keys 1981 page 11

Kent.

Kenj: Church Hill,

Keston,
Khaneh Kot ,
Kildonan,
Kilkenny,
Kilkenny Co.,
Kimeridge,
King's Quay,
Kingsthorpe,
Kington,
Kirkaldy.
Kirtlington,
Kressenberg,
La Créche,
La Presta,
Ladybank.
Ladysmith,
Lagus,
Lanarkshire,
Lanarkshire,
Lancashire,
Lancashire,
Langenattheim.
Langholm,

Langholm Dumfries.

Langton Bridge,

Langton Matravers,

Lantic Bay,
Lantivet Bay,
Lantivit Bay,
Lantwit Bay,
Laramie,
Laycock,

le Cheminot,
Le Wast,
Leckhampton,
Ledbury,
Ledbury Tunnel,
Leeds,
Leicestershire.
Leigh.

Leighton Buzzard N

Leintwardine,
Leintwardine,
Leith,

Leognan,

Les Pichottes,
Lesmahagow,
Lethen.
Lethen,

Lethen Bar.

Hereford.
Herefordshire.
Bromley,

Fars,

Eigg.

Ireland.
Ireland.
Dorset. .
Wootton, *
Northamptonshire,
Herefordshire,

Oxford shire.
Bavaria.
Boulogne,

Val de Travers,

Natal,
Saucats,

Scotland.

Dumfries,

Chipping Norton,
Isle of Purbeck,
Swanage,

Lantwit Bay,
Polperro,
Cornwall.
Polperro,
Wyoming,
Wiltshire.’
Cresantignes,
Boulonnais,
Gloucestershire,
Herefordshire.
Herefordshire.
Yorkshire.

Bed ford shire.

Herefordshire.
Edinburgh,
Edinburghshire,
Gironde,

Le Wast,
Lanarkshire.

Nairnshire.

FiG. 8

Kent.
Persia.

Isle of Wight.

France.
Switzerland.

South Africa.
Gironde,

Scotland.

Oxfordshire.
Dorset.
Dorset.
Polperro,
Cornwall.

Cornwall,
U.S.A.

Aube,
France.

Scotland.
Scotland.
France.
Boulonnais,

France.

Cornwall.

France.

France.

127

GOS: a package for making catalogues

J.69027-69028 xx.t.37

Cambridge, P. Coll., 1981, ref: V341,

Lower Lias; Blockley Station Pit,
Blockley Village (1.5 miles N.E.),
Worcestershire, grid ref: NGR SP
181373.

Identified, Cox, L.R., as Modiolus
scalprum (J. Sowerby).

J.69029 xx.t.18

Cambridge, P. Coll., 1981, ref: V273.

Lower Lias; Blockley Station Pit,
Blockley Village (1.5 miles N.E.),
Worcestershire, grid ref: NGR SP
181373.

Identified, Cox, L.R., as Ostrea
(Liostrea) irregularis (Minster).

J.69030 xx.t.18

Cambridge, P. Coll., 1981, ref: V108.

Lower Lias; Honeybourne Brickpit,
Worcestershire, grid ref: NGR SP
11584517, loc: Exposure 1,

Identified, Cox, L.R., as Ostrea
(Liostrea) irregularais (Minster).

J.69031 xx.t.35
Cambridge, P. Coll., 1981, ref: V1840.

Lower Lias; Honeybourne (Battle
headquarters), Worcestershire.
Hippopodium ponderosum (J. Sowerby).

J.69032 xx.t.37
Cambridge, P. Coll., 1981, ref: V341,

Lower Lias; Aston Magna Brickpit,

Worcestershire, grid ref: NGR SP 2036.

Modiolus scalprum (J. Sowerby).

J.69033 xx.t.35

Cambridge, P. Coll., 1981, ref: V1840.

Lower Lias; Aston Magna Brickpit,
Worcestershire, grid ref: NGR SP 2036.

Hippopodium ponderosum (J. Sowerby). *

J.69036

J.69034-69035 xvii.b.10

Cambridge, P. Coll., 1981, ref: V253.

Lower Lias; Bretfarton (ditch near),
Vale of Evesham, Worcestershire, grid
ref: NGR SP 083439.

Identified, Howarth, M.K., as
Ichthyosaurus sp. vertebra.

xx.t.18

Cambridge, P. Coll., 1981, ref: V435,

Lower Lias; Campden Railway Tunnel,
Chipping Campden (near),
Gloucestershire, grid ref: NGR SP
165404,

Identified, Cox, L.R., as Ostrea
(Liostrea) irregularis (Miinster).

J.69037 xvii.b.10

Cambridge, P. Coll., 1981, ref: V253,
Lower Lias; Kemerton (near),
Worcestershire, grid ref: NGR SO 9437.

Ichthyosaurus sp. humerus.

J.69038 xx.t.67

Cambridge, P. Coll., 1981, ref: V1847,

Bucklandi Zone, Lower Lias; Redmile,
Grantham (near), Lincolnshire.

Identified, Cambridge, as Arnioceras
semicostatum (Young and Bird).

M. F. PORTER 129
REFERENCES

Gorman, M. and Winkler, P. W. (1980) Anglo-American Cataloguing Rules. Second edition.
London: Library Association.

Griswold, R. E., Poage, J. F. and Polonski, 1. P. (1978) The SNOBOL4 Programming
Language. Englewood Cliffs, New Jersey: Prentice-Hall Inc.

Griswold, R. E., Hanson, D. R. and Korb, J. T. (1979) The Icon programming language — an
overview. ACM Sigplan Notices 14 (4) 18-31.

Porter, M. F. (1980a) GOS Reference Manual. Duxford, Cambridgeshire: Museum
Documentation Association.

Porter, M. F. (1980b) How to use GOS. Duxford, Cambridgeshire: Museum Documentation
Association.

Porter, M. F. (1980c) Description of the internal structure of GOS. Duxford, Cambridgeshire:
Museum Documentation Association. _

Porter, M. F., Light, R. B. and Roberts, D. A. (1977) A unified approach to the computeriza-
tion of museum catalogues. London: British Library (British Library Research and
Development Reports. Report no. 5338 HC).

Richards, M. and Whitby Strevens, C. (1979) BCPL — the Language and its Compiler.
Cambridge University Press. ,

Roberts, D. A. and Light, R. B. (1980) Progress in documentation: museum documentation. -
Journal of Documentation 36 (1), 42-84.

- UK Marc Manual (1980) Second edition. London: British Library.

