Information Technology: Research and Development (1982), 1 (23-39)
© 1982 Butterworths

A NATURAL LANGUAGE ANALYSER
FOR DATABASE ACCESS

B. K. BOGURAEY anp K. SPARCK JONES

Computer Laboratory, University of Cambridge, Corn Exchange Street,
Cambridge CB2 3QG, UK

(Received 22 April 1981, revised 16 July 1981)

ABSTRACT

Access to databases is conventionally by queries couched in a formal query
language. However in many environments it would be more convenient if
questions in natural language were allowed. Hitherto natural language
access systems have relied on grammars making heavy use of database-
specific information. Such systems are not readily transportable from one
database to another. The paper describes a project aimed at improving
transportability through the use of a powerful general natural language
analyser, to be combined with a relatively restricted database-specific
translator. The design of the analyser and its current state as developed and
tested are detailed, its performance is illustrated, and the basis for the
building of the translator is outlined.

In recent years increasing effort has been devoted to the design of intelligent
retrieval systems. The proliferation of ever-larger databases, with more extended
user communities, available via interactive and distributed computer systems-has, in
particular, stimulated research on systems for natural language access to databases.
This paper describes the approach being adopted to the design of a natural language
processing front end for database access aimed at maximising data independence i in
the analyser and grammar used, especially in semantic processing.

1. RATIONALE

Among the various types of information retrieval systems, conventional database
systems are the most straightforward. Though there are many challenging problems
associated with database management, as far as retrieval is concerned the
combination of definite questions and direct access typical of current database
systems implies a relatively simple matching operation for retrieval. In data retrieval
systems questions are definite because they are accurate characterisations of the
sought information; and access is direct because the items retrieved explicitly display

24 Natural language analyser for database access

the sought information. Accuracy in question formulation, and explicitness in data
description, are promoted by the use of formal query and data languages. Indefinite
questions and indirect access, on the other hand, require more intelligent systems
allowing for non-trivial, that is evaluative, matching of question against
information store, i.e., systems able to put interpretive effort into manipulating
questions, and inferential effort into manipulating the contents of the store.

Unfortunately, while formal query languages have retrieval advantages, they are
not necessarily attractive to the system user, and especially to the so-called casual
user, just because they force him to express his need in a highly controlled and hence
artificial way. The obvious vehicle for initial question presentation is the user’s
natural language, and in the last few years in particular a variety of approaches to
the design of natural language question processors have been put forward and
implemented, in some cases for independent and even commercial user
communities. In these cases, even though the inferential manipulation of the
contents of the information store which is characteristic of much artificial
intelligence activity is not undertaken, the requirements to be met by the input
question interpreter mean that the system has to become much more sophisticated,
i.e., intelligent, than the conventional database system. Except where the data in the
store itself are extremely simple, this is true even though the questions are essentially
definite in the sense introduced earlier, and the data store itself is precoded. The
richness of natural language, and its consequent potential for ambiguity, make the
transformation of input natural language questions into formal query language
search specifications extremely complicated. The difficulties of the task are
increased by the need to provide a hospitable system, i.e., one allowing incomplete
inputs and extended dialogue, as well as providing various feedback facilities, for
example for checking input question interpretations. But the difficulties remain even
where the single question—answer interaction, for well-formed questions, is all that
is assumed.

In general, the strategy adopted in order to control the interpretive process has
been to work with a database-specific grammar, i.e., to assume that the concepts
and concept structures of the input question texts are restricted to ones appropriate
to the universe of discourse of the database (Hendrix et al., 1978; Waltz, 1978). The
detail has varied, but has essentially consisted of working with semantic categories
and semantic patterns, or message forms, referring to the objects and relationships
of the database, for example in a geological application to rocks and to samples
containing minerals, or in a defence application to types of ship and their proximity
to fuel supplies. In early systems, such as LUNAR (Woods ef al., 1972; Woods,
1977), such semantic categories and patterns were used to check and select structures
derived by conventional syntactic analysis; more recently they have to a considerable
extent replaced conventional syntactic categories and patterns. The approach is
made more efficient if, as is natural, it is tied to a restricted vocabulary, i.e., a
dictionary confined to those words, or more specifically, word senses, relevant to
the database. Further, though a small or, more importantly, closed vocabulary
cannot, as Harris (1977) has pointed out, be assumed for database systems, database
characterisations of the vocabulary may still be produced through reference to the
database itself.

The essential disadvantage of exploiting database-specific semantics is that it
makes the system front end less generally applicable. It can be assumed that the
front end will normally interface with a standard query language and database
management system, e.g., a system using the relational model. A standard type of

B. K. Bocuraev anp K. Sparck Jones 25

database management system like this might well be expected to be applicable to
different databases, especially in a highly portable implementation. It is therefore
unsatisfactory if the front end natural language processor is not equally widely
applicable. Unfortunately there may be a tradeoff between increased effectiveness in
the question interpreter achieved by greater database specificity, and reduced
generality. From this point of view, relying on database-specific lexical coding using
database-oriented semantic categories, and on database-oriented semantic patterns
minimising the use of conventional syntax, maximises the effort of dealing with a
new database, quite apart from that involved in providing dictionary entries for new
words and word senses. It has moreover to be recognised that the database-oriented
approach may prove unduly restrictive even for a single database, if this is
developing over a period of time, or being exploited by new kinds of user or for new
types of use.

Given that a database-specific interpreter is efficient, one possible approach to
portability is to provide an extensive apparatus for characterising the database-
specific elements of the front end, i.e., for constructing (and hence for using) the
database-specific word and text characterisations (Bronnenberg et al., 1979;
Konolige, 1979.) The alternative approach to reducing the rewriting effort is to
increase the generality of the front end, and to compensate for the loss of focus
resulting from the lack of database orientation by increasing the richness and power
of the natural language processing elements of the interpreter.

Unfortunately, the price to be paid for a more general interpreter is that the
transformation of the input question into the formal search specification becomes
less direct. It follows that the organisation of the interpreter will have to be more
complex than has been assumed so far: specifically the front end will cover two
processing steps, natural language analysis proper deriving a meaning representation
from the input question, followed by database-oriented processing to derive the
query search specification from the meaning representation. Quite extensive
rewriting of the input question representation may be required even when a
database-oriented natural language analyser is used, since the organisation of the
question may be very different from that of the searching query, but the rewriting is
facilitated by the database-oriented elements and structures applied in analysis and
featuring in the initial output of the analyser. If a general analyser is used, explicit
connections have to be made between the semantic apparatus which is used for
analysis and to provide the question meaning representation, and the semantic
apparatus associated with the database. We may therefore suppose that the meaning
representation provided by the analyser will be input to a distinct translation
component which at least requires rules linking detailed meaning representation
elements and structures with those of the database.

The separation of the analyser and translator may nevertheless be less costly than
it appears to be. If the meaning representation derived by the analyser is a
regularised, or ‘normalised’, expression of the content of the input text, the
formulation and application of the translation rules may not be too complicated.
Specifically, applying database-specific information in translation from normalised
meaning representations may be less exigent than applying it in analysis, where
un-normalised input texts have to be handled.

The approach being adopted in the present project for natural language access to
databases is therefore that of working with a front end consisting of a natural
language analyser exploiting a general syntax and semantics to derive a meaning
representation for the input question, and a translator exploiting the database

26 Natural language analyser for database access

syntax and semantics to derive a search specification from the meaning representa-
tion. The basic assumption:is that the analyser semantics in particular are powerful
enough to interpret questions without recourse to database-specific information,
and to provide a rich enough meaning representation to drive the translator. The
general structure of the proposed system is compared with that of a typical current
system in Figure 1.

(a)

Naturat E&tqua .
language| syngthg&
syntax : semantics
{Natural Search Data base Data
language query management base
interpreter system
() Natural Data
language language
syntax & syntax &
semantics . semantics
3 2 Data base
2 ata
Analyser |/ 760" Translator | fs{ >€areh management Data
g query base
repre- system S
senta
tion
Natural language interpreter

Fic. 1. Scheme for natural language analyser. (a) Conventional system;
(b) proposed system

~ The remainder of this paper will be devoted to the proposed system analyser: the

development of the translation component of the interpreter has only just begun,
and no more than indicative remarks will be made about it, following the description
of the analyser.

2. OUTLINE OF THE NATURAL LANGUAGE ANALYSER

The analyser is built on the ideas of Wilks (1975a, b) and Woods (Woods ef al.,
.1972; Woods 1977). As described in Boguraev (1979), it was explicitly designed to -
- tackle lexical and structural disambiguation, i.e., to determine the meaning in

context of words having a range of possible lexical functions and senses, and the
meaning of word strings having a range of possible syntactic structures and
readings. The analyser was tested by Boguraev for a non-trivial vocabulary and
syntactic grammar, and evaluated by the generation of paraphrase sentences from
the derived meaning representations.

B. K. Bocuraev anND K. Sparck JONES 27

The analyser is based on the use of semantic primitive categories and patterns,
i.e., on the principle that the meaning of text elements and structures is determined
by reference to general semantic categories which are shared by individual words,
and to the ways in which these categories can be combined to construct message
forms. In other words, an important role in text understanding is played by the
assimilation of sentences to underlying generalised messages, or, to put it the other
way round, familiar message prototypes can be applied to given text sentences to
force the selection of specific meanings for them, and to supply characterisations of
their essential character.

This basic idea has of course been widely exploited, both for language analysis in
general and as indicated, via specialised categories and patterns, for access to
databases. The points of interest here are the effectiveness of the given semantic
apparatus, i.e., repertoire of primitives and patterns, both for analysis and
representation, and the way in which it is applied in analysis, particularly in relation
to conventional syntax.

The semantic apparatus is derived from Wilks, but has been considerably
extended. It depends on a large number of primitives, and on several types of
pattern ranging from the text-general to the word-specific. This apparatus is
exploited in conjunction with conventional syntax within the framework of an
augmented transition network (ATN) parser. The approach to syntax, and to the
control of the parsing process as a whole, by the use of the ATN formalism, is
derived from Woods. The syntactic grammar is designed to identify syntactic
constituents, such as noun phrases, prepositional phrases, etc. These constituents
are then semantically evaluated and combined to obtain the lexically and structurally
selected meaning representation for the sentence as a whole.

The parser thus uses conventional syntax in the way that Wilks’ system did not;
but it does not seek to build a complete syntactic parse tree in LUNAR style, for
subsequent semantic evaluation. However, while syntax and semantics are combined
in processing, they are not exploited together for every input lexical item, as in
Riesbeck’s original MARGIE analyser (Riesbeck, 1975) or Small’s Word Expert
Parser (Small, 1980). The syntax is used to identify the basic building blocks of the
sentence structure, which are then fitted together, and hence labelled, according to
the way they satisfy the element and relationship preferences of the various semantic
patterns. The semantic matching is therefore done at those points in the syntactic
analysis which naturally supply sets of candidate pattern slot fillers, i.e., at noun
phrase and, more importantly, clause levels. Since, realistically, the semantic pattern
matching is not based on the idea of meeting absolute requirements, but on that of
satisfying as many preferences as possible, the semantic interpretation of a sentence
is the combined product of many different competing, and perhaps only partially
successful, pattern matching operations. The parser output is a case-labelled
dependency structure, i.e., a structure with semantic relation primitive labels and
slots filled by the characterisations, using semantic category primitives, of selected
word senses. The dependency structure itself, and the particular case labels involved,
are derived from the various patterns supporting the preferred interpretation.

3. ANALYSER DETAILS

The syntactic apparatus is quite straightforward. It is largely derived from the
LUNAR system and is quite comprehensive in scope. It has recently been extended

28 Natural language analyser for database access

to deal with question forms and to allow for compound nominals, ‘both types of
structure of particular importance to the database application. The non-
determinism inherent in natural language syntax analysis is not eliminated, but is
much reduced, by the fact that no attempt is made to integrate all the syntactic
constituents identified into a single syntactic parse tree. The constituents in turn are
handed over as the contents of a set of registers to the semantic specialist routines.
Inappropriate constituent analyses are blocked by semantic checks at the relevant
assembly level.

The semantic apparatus, though it is based on Wilks’, has been systematically and
significantly developed, partly to permit cooperation with syntax, and partly to
provide for a richer output structure characterisation. There are about 100 semantic
category primitives and currently about 30 semantic structure primitives
representing case relations (not all of which have been fully implemented). The
primitives are used to characterise the senses of words, and a variety of discourse
patterns. The category primitives, virtually directly taken over from Wilks (1977),
are fundamental to both analysis and representation; the relation primitives appear
explicitly only in sentence meaning representations, extracted from different
syntactic and semantic structures identified by the analyser. Some examples of each
type are given in Figure 2a and c. (Note that category primitives can be prefixed by a
special primitive NOT.) For convenience in expressing discourse patterns, the
category primitives have been grouped in classes, as illustrated in Figure 2b. As
mentioned, the case relation primitives have not all been implemented: the analyser

a) examples of category primitives

ACT
ASK
BEAST
COUNT
GOOD
HAVE
LIFE
MUCH
PART
STUFF
WHERE

b) examples of category primitive classes

*PHYSOB = < THING, MAN, BEAST, SPREAD, PLANT, PART >
#ANI = < MAN, FOLK, BEAST, SIGN >

*¥MAR = < SIGN, ACT, STATE >

c) examples of relation primitives

attribute.
destination
goal
instrument
location
mental-object
source
time-location

Fic. 2

B. K. Bocuraev anp K. Sparck JoNEs 29

was tested by Boguraev with a limited and slightly ad hoc set, and the current set is
the product of a recent extensive review of the literature and of prepositional
behaviour. In Wilks’ system a number of category primitives also functioned as
explicit case labels, but this approach proved difficult to sustain, and the separate
case labels for the meaning representation dependency structure were therefore
introduced.

The category primitives are used to build formulae defining word senses, i.e., to
characterise word senses to the extent required for effective sense discrimination.
This level is assumed to be also adequate for operations on the analyser’s output
meaning representation, though this assumption has not been tested beyond the
point represented by Boguraev’s generation experiments: the translation of meaning
representations into search specifications for database access will constitute another
test of their wider adequacy. The word sense formulae are complex structures with a
well-defined syntax, laid down by Wilks (1977). Essentially they are binary trees
with dependent-governor pairs at each node, the top-level (rightmost) governor
being marked as the head of the formula. The rules for formula building are
associated with groups of primitives and types of subformula: according to their
groups, the primitives have specified governor and dependent potentialities for
participating in different subformula types (full details are given in Wilks).
Illustrative formulae for different senses of the noun ‘‘crook’’ (meaning criminal
and shepherd’s staff respectively) are given in Figure 3a.

As noted, the semantic patterns used are of two kinds, ones general to discourse,
and ones tied to individual word senses. In principle this distinction is perhaps not
absolute, but rather one of degree; it is in any case a practically convenient one,

The general-discourse text patterns are chiefly represented by a substantial set of
templates, i.e., basic message or propositional forms. These patterns are designed to
link constituents, via their primitive characterisations, and specifically their head
primitives. The general form of a template is that of actor—action—object, i.e.,
syntactically they link the heads of verb groups with the heads of their subject and
object arguments. The expression of patterns is made more convenient by the classes
of primitives: thus the template for each action primitive in the illustrative set of
Figure 3b represents a group of more specific alternative templates with individual
category primitives substituted for the class names. The relations between the
elements of the templates may lead to certain relation primitives in the meaning
representation, such as agent labelling for the syntactic subject. The templates used
in the system are essentially taken over from Wilks; but as their discriminating
power is rather weak, they play a less important role than in Wilks’ system. In
addition, some other general text patterns have been introduced. Establishing the
relation between adjective and noun de facto exploits what may be called a single
qualifier structure ‘qualplate’ *ENT BE KIND; and there are also about: 10
‘complates’, more elaborate patterns designed to deal with complement structures.
An example is

MAN *DO *INAN “‘to””> *ACT-embedded clause
supplying the output relation primitive goal/, which would match onto
“Did Clark supply new parts to replace the faulty ones?”’

Word based patterns are primarily represented by formulae associated with two
types of word, verbs and prepositions. The patterns associated with verbs, called
contextual verb frames, indicate the characteristics of the clause environment for the

30 Natural language analyser for database access

a) formulae for senses of the noun "crook"

"crook"
(cat NOUN)
(ndef
(crook?
((((NOTGOOD ACT) OBJE) DO) (SUBJ MAN)))
(crook2
((((((THIS BEAST) OBJE) FORCE) (SUBJ MAN)) POSS) (LINE THING)))
) .

b) examples of templates

#ANI FEEL *MAR subsuming MAN FEEL SIGN
FOLK FEEL ACT

vee

*ENT HAVE *ENT
*#POT NOTPLEASE *ANI subsuming THING NOTPLEASE FOLK
GRAIN NOTPLEASE FOLK

e

c) verb frames for senses of "beat"

llbeat"
(cat VERB)
(vdef
(beat 1
((*HUM SUBJ)
({*ANI OBJE)
((*®INST INST)
(C((NOTPLEASE BE) CAUSE) GOAL) STRIK)))))
(beat2:
((*ANI SUBJ)
((*ANI OBJE)
((((ACT OBJE) (GOOD WAY) DO)) GOAL) DO)Y))
(preps
(("in" "at") *MAR activity)))

d) preplates for "with"

“with“
witht (®ENT attribute ¥*ENT)
with2 (STRIK manner ¥*MAR)
with3 (STRIK instrument #*INST)
with4 (*DO manner *MAR)
with5 (*DO accompaniment *HUM)
with6é (MOVE instrument THING)
with7 (NOTHAVE manner #*MAR)
with8 (CHANGE instrument *INST)
with9 (CAUSE instrument ®*INST)
with10 ((SEE SENSE) instrument (SEE THING))

FiG. 3

particular verb sense. The verb frame reflects the importance of the verb both in
analysis, as the key to the interpretation and connection of the other constituents,
and in sentence representation as the focus of the output dependency structure. The
verb frame specifies the semantic characteristics of the verb’s case role fillers as these
may be supplied by syntactic subject and object noun phrases (as in Wilks’ system),

B. K. Bocuratv anp K. Sparck JONES 31

by prepositional phrases associated with compulsory and optional prepositions
(so-called prepspecs), and by other syntactic constituents like complements,
predicative adjectives, etc. The prepspecs have relation primitives for the output
meaning representation associated with them. This frame specification supplements
the basic word sense formula, so the full dictionary entry for a verb is as illustrated
for ‘“beat’’ (meaning hit and defeat respectively) in Figure 3c. The patterns for
prepositions not dependent on verbs, called preplates, indicate the semantic
character of the prepositionally linked items, usually the primitive class membership
required of the heads of these constituents. Preplates, like the prepspecs, also
indicate the case relation primitives to be used to label the output for the meaning
representation linking prepositionally connected items. The system does not require
any direct formula for the preposition itself; but recent study of an extensive
preposition sample suggests that an attempt will have to be made to characterise
prepositions other than by the relation primitives, and more fully than Wilks did.
The preplates are derived from Wilks’ paraplate structures, but are less constraining
and allow a more flexible approach to the treatment of prepositional structures.
Some representative preplates, for ‘‘with’’, are given in Figure 3d. The emphasis on
the output case structure further led to the introduction of prepspecs, like the verb
ones, for predicative adjectives.

These word based patterns are clearly more specific than the template type,
though they could be common to the senses of different words.

Taken together, the types of pattern provide extensive resources for
disambiguation, given that on the one hand they are associated with the quite
detailed formula characterisations of individual word senses, and on the other are
able to exploit the information about sentence units supplied by the syntax analysis.
They account for both the system’s capacity to deal with the more complex and
extensive sentential structures than Wilks’ original implementation, particularly by
relating semantic processing to syntactic analysis, and its ability to provide a more
tightly structured output meaning representation. The word formulae are the
essential basis for both meaning determination and representation: they are
exploited by the patterns in the former, and fill the case-relation labelled slots in the
latter. The primitives, and especially the semantic category primitives, underpin th
whole. :

4. ANALYSER PROCESSING

As indicated earlier, this semantic apparatus is applied at potentially productive
points in the syntactic traverse of the input sentence, i.e., at those points where
enough information has been accumulated for it to be worth attempting ambiguity
resolution. The most important of these points occurs when the parser has
recognised a clause, either at top or any embedded level, for example when a relative
clause has been recognised. Semantic processing is also done when a noun phrase is
recognised, but the processing here is simpler since it is confined to semantic
evaluation either of relatively straightforward strings like adjective—noun
combinations, or of strings which have already been partly evaluated, like nouns
with associated relatives: the relative clause will already have been subjected to
semantic processing. Semantic processing in the first case exploits the qualplate, in
the second essentially reconfigures the clause.

The more interesting and comprehensive clause processing involves matching the

32 Natural language analyser for database access

various relevant types of pattern against the building blocks represented by the
syntactic constituents identified by the ATN syntactic analysis, to see how far the
constituent primitive characterisations match the pattern preferences, and hence
select word senses and sentence structures for which appropriate dependency trees
and case labels can be triggered. The processing cycle, briefly outlined below and
summarised in Figure 4, is basically divided into two phases, the first aimed
primarily at manipulating preferences to obtain the highest ones, the second at
building the clause meaning representation suggested by the preferred
interpretations for the clause constituents and their relationships.

step activity . pattern
phase 1 - establish preferences
1 check compulsory prepositions . verb frame prepspecs
2 check optional prepositions verb frame prepspecs
3 check syntactic cues verb frames,
. complates
4 check SUBJ OBJE verb frames
5 match templates templates
phase 2 - build and label representation
6 identify Object as object or recipient
7 identify Predicate Adjectives as state
8 identify Modifiers as cases e.g. location preplates
9 identify Subject as agent
10 identify Complements as cases e.g. goal complates

Processing cycle using syntactic registers Subject, Object, Verb, Modifiers, etc.

Fic. 4

The first phase of the cycle, obtaining preferences for alternative lexical and
structural interpretations, is centred on the verb-and applies conditions in order
from most stringent to least stringent. Thus attempts are first made to satisfy any
obligatory preposition requirements for the verb, then optional ones, then to match
syntactic cues referring to, for example, complements, subsequently to satisfy
subject and object requirements for the verb, and finally to apply templates. It must
be emphasised that there is never any attempt to unequivocally accept or reject
interpretations, only to rank them. This allows for revisions of earlier interpreta-
tions given more information, and for partially satisfied requirements, i.e., for the
novelty of word use and primacy of context which are characteristic of ordinary
discourse; and it leads to the output of a meaning representation embodying the
most plausible sentence interpretation.

The second phase of the cycle builds the sentence representation, subject to
assembly checks, and labels the case relationships invoived. The order of processing
here is from the most local or central environment of the verb to the more global or
peripheral elements of the clause. The syntactic object is initially identified as object
or recipient role filler, any predicative adjective as state, and other prepositional
modifiers as other case role fillers, according to their preplate matches; syntactic
subject is normally labelled as agent, and finally any complements are attached with
further case roles. The cycle steps are listed in Figure 4, which shows the types of
semantic pattern used along with formulae and other syntactic information at each
stage. The assembly process also produces the dependency tree; so where complex
sentence structures are input, the final tree represents the attachment of lower-level,

B. K. Bocuraev aND K. Sparck JONES 33

already-analysed clauses to their higher-level governors. Essentially the tree
structure represents the hierarchical organisation of the analysis process.

The characteristic cumulative effect of the semantic processing can be illustrated
by an example. In the account below the operations of the analyser are necessarily
summarised, and irrelevant details (e.g., about syntactic procedures) are omitted,
but the essential nature of the processing should be clear. Suppose we have the input
sentence

““The crook beat the woman with violence”’

(compare, e.g., ‘“The crook beat the woman at chess,”’ ‘‘The crook beat the woman
with the cloak,” ‘“The shepherd caught the ewe with his crook’’). According to the
dictionary entries of Figures 3a and ¢ we have two senses of ‘‘crook’’ and two senses
of “‘beat’’ to sort out, assuming, for simplicity, only one sense each of ‘‘woman’’
and ““violence’’. We also have alternative interpretations of the preposition ‘‘with’’,
as shown in Figure 3d. The essential task of the clause semantic processing for the
sentence is to select the correct (i.e., most likely) senses of ‘‘crook’” and ‘‘beat’’, and
to attach the prepositional phrase correctly, in the process giving it its case
interpretation.

The processing starts with the constituent analyses for ‘‘the crook’’, ‘“beat’’, ‘‘the
woman’’ and ‘‘with violence’’ in the syntactic Subject, Verb, Object, and Modifiers
registers respectively. As these constituents are simple, we can assume that the
register contents consist essentially of pointers to all of the dictionary formulae for
their head words. The contents of the registers are summarised in Figure 5a. In the
first phase of the processing cycle, step 1, which considers compulsory prepositions
for the verb, does nothing. Step 2, considering optional prepositions, deprefers
‘beat2’ as there is no preposition present, i.e., indirectly prefers ‘beatl’. Step 3,
which checks syntactic cues, for this sentence does nothing. Step 4, which looks to
see how the primitive preferences associated with the SUBJ and OBJE subformulae
in the verb frame are satisfied by the heads of the constituents in the Subject and
Object registers, has no effect on the preferences for ‘‘beat”’ itself, while the OBJE
preferences are both satisfied by ‘‘the woman’’ which is *ANI; but for SUBJ the
step prefers ‘crookl’, as MAN matches both *HUM and *ANI, neither of which are
matched by THING for ‘crook2’. The two relevant templates, for the verb head
primitives STRIK and DO respectively, both match the head primitives for ‘‘the
crook’” and ‘‘the woman’’ respectively, so there are no preference changes. Overall,
therefore, the effect of the first phase of processing has been to assign higher
preferences to ‘crookl’ and ‘beatl’.

In the second phase, step 6 identifies the syntactic object as recipient, since it is
characterised by *HUM. Step 7, predicative adjective, is irrelevant. Step 8, applying
the preplates for ‘‘with’’, has the alternative possible attachment structures
corresponding to ‘‘beat with violence”’ and ‘‘woman with violence”’ to consider; the
step prefers ‘with2’ and ‘with4’, which match the two senses of ‘“beat”’ respectively
and link the prepositional phrase with the verb, to the other interpretations of
“with”’: ‘with2’ and ‘with4’ both match ‘“beat’’ with STRIK and *DO respectively,
and ‘‘violence’” with *MAR. ‘With2’ and ‘with4’ are thus preferred to ‘withl’
which, trying to attach the prepositional phrase to the object, succeeds in matching
*ENT with ““woman’’, but fails to match ‘“violence’’ as this is ACT and not *ENT
as required. ‘With2’ and ‘with4’ are also preferred to ‘with3’, even though this links
the prepositional phrase with the verb by matching ‘“beat’’ with STRIK, because

34 Natural language analyser for database access

Sentence: "The crook beat the woman with violence.®

a) register contents

Subject

croock! (... MAN)

crook2 (... THING)
Verb '

beat1 (... STRIK)

beat2 (... DO)
Object

woman1 (... MAN)
Modifiers

with (preplates)

violencel (... ACT)

b) processing cycle

phase and step activity result

11 compulsory prepositions -
2 optional prepositions deprefer beat2
3 syntactic cues -
y SUBJ & OBJE

beat1 (*HUM SUBJ) (®*ANI OBJE)

beat2 (¥*ANI SUBJ) (®ANI OBJE) prefer crook?
5 ’ - templates

beat1 *POT STRIK *PHYSOB

beat2 *POT DO *ENT -

highest preferences by now are for crookl and beat1

6 Object is %HUM label as recipient
7 Predicative Adjectives -
8 Modifiers preplates

with1 (®ENT attribute ¥ENT)

with2 (STRIK manner ¥MAR)

with3 (STRIK instrument *INST)

with4 (¥DO manner ¥MAR)

with5 (®*DO accompaniment *HUM) prefer with2,withi
9 Subject label as agent
10 Complements -

final highest preferences are for crooki, beat1 and with2

c) output representation

(clause

(type dcl)

(tns past)

(v

(beat1 (... STRIK)

(agent (crookl (... MAN)))
(recipient (woman1 (... MAN)))
(manner (violencel (... ACT))))))

Fic. §

‘“violence”’ is not *INST; and they are preferred to ‘with5’, which matches *DO for
‘“‘beat’’ but fails with ‘‘violence’’, which is not *HUM. The remaining senses of
““with’> do not match at all. Step 9 labels the syntactic subject as agent, while step
10, treating complements, has no effect. The final highest preferences are therefore
for ‘crookl’, meaning criminal, ‘beatl’, meaning physically strike, and, because of

B. K. BoGuratev anD K. Sparck JonEs 35

‘beatl’, ‘with2’, linking ‘‘violence’’ with ‘‘beat’’ and labelling the relationship as
one of manner. The complete sequence of steps is shown in Figure 5b, together with
the pattern information and the step results, and the output meaning representation
in Figure 5c.

5. DATABASE APPLICATION

This example shows how the analyser works in a lexically and structurally
ambiguous environment of the kind for which it was designed. For the database
application a number of system developments are necessary. These can be viewed
primarily as required by the need to meet the task specification, but also as following
from the need to tackle problems appearing in a particularly virulent form in this
context. However, they can also be seen as representing the type of development
which would have to be undertaken if the analyser was to be connected with those
more extensive and powerful procedures for manipulating knowledge and making
inferences which are associated with the idea of language understanding in the
strong sense in which this expression is frequently used. Thus while the database task
may be treated as an end in itself, it can also be treated as a not uninteresting or
overly eccentric type of many processes which use knowledge in a complex or
sophisticated way. It is clear that many of the details of the system front end must be
determined by the individual and somewhat artificial characteristics of the precoded
database; but the hypothesis is that a good deal of more general utility for language
understanding can be learnt from the attempt to link natural language with some
form of concept representation, even if this is only of the comparatively simple kind
permitted by the average database. A good example of the type of development
which is desirable from both points of view is that required to handle quantifier
structures adequately.

As mentioned earlier, the translation interface between the analyser proper and
the database management system has not yet been designed. All that can be done
here, therefore, is to indicate the constraints placed upon the overall front end
organisation and content by the combination of task requirement and philosophy
underlying the front end design; and to suggest some of the lines to be followed.

An initial question is the extent to which the meaning representation output by the
analyser should be normalised, i.e., what different surface texts should be mapped
onto the same meaning representation. The analyser meaning representations are
more normalised than Wilks’ original ones, but do not aim at the detachment from
the surface text typical of Conceptual Dependency, for example (Riesbeck, 1975). It
is, however, obvious that many quite different input question texts will have to map
onto the same formal search specification, for instance those illustrated in Figure 6.
Normalisation is a matter both of the meaning representation structure and of the
characterisation of its slot fillers. As these examples show, very considerable
transformation of the input sentence may be required to achieve the canonical form
of the search specification. Quite radical rewriting of the input expression was
typical of the LUNAR question interpreter, for instance.

It is not, however, obvious that the analyser should be required to produce highly
regularised meaning representations as its direct output. The essential function of
the translation component of the front end is to produce the canonical form queries
required by the database management system being used. In general the task of the
translator will be made easier if its input meaning representation is highly

36 Natural language analyser for database access

a) input questions

What city is Smith in?
What is Smith's city?
Which city is Smith in?
Which is Smith's city?
What city does Smith have?
In what city is Smith?
What is the city for Smith?
Where is Smith located?
What is Smith's town?
Where is Smith?

b

~

search query in DSL ALPHA

GET W(S.CITY): S.SUPPLIER = 'SMITH'

Fic. 6

normalised, and also if the type of normalisation is oriented towards the ultimate
query form; naturally, the degree and type of normalisation which is appropriate
will be influenced by the particular ‘lexical’ and structural schematisation of the
data language expressions determined by the content of the database. However, if
the analyser proper is to be applicable to different or changing databases, and
hospitable to different user views of an individual database, this suggests that it
should initially produce relatively ‘unoriented’ meaning representations, but that it
should have the capacity to further process initial meaning representations to obtain
refined representations more appropriate in structure and/or degree of lexical
standardisation to their ultimate application. It is perhaps dangerous to make the
further normalisation too database-specific: a safer strategy would be reformulation
based on the general principle that the whole interpreter is concerned with
processing questions, i.e., with texts searching for unknowns. Thus the analyser
currently reformulates question structures to simplify them and emphasise the
queried unknown: for example, the reformulation of the initial meaning
representation derived by the analyser for

‘““What is the colour of the parts which are supplied to London by S1?”’

is shown in Figure 7. In this case a recipient is initially generated because the (query
(DUMMY)) derived as syntactic object from ‘‘what’’ vacuously matches the *HUM
requirement of step 6 in the processing cycle; but it can properly be removed as
redundant because there is a more specific query pointer identifying the unknown
item in the structure, namely the state value.

Allowing further normalisation in this fashion, if it does not represent database
encroachment on the analyser, does imply complication of the front end interpreter
as a whole. Complication also follows from a much more intractable problem in the
context of the attempt to separate the language-general from the database-specific,
namely that represented by compound nouns. Non-lexicalised compound nouns are
a pervasive feature of ordinary language use in English for example, and are
exceptionally conspicuous in the database context, where the front end analyser may
encounter such phrases as ‘‘motorway gas station building régulations’’. Unfortun-
ately, as the general literature on the subject makes clear, the interpretation of such
compounds is chiefly determined by pragmatic considerations, only weakly

B. K. Bocuratv aND K. Sparck JoONES 37

Sentence: "What is the colour of the parts which are supplied to London by S1?"
a) before post-editing '

(clause

(type question)

gt:ns present)

v
((*ANY SUBJ) ((*ANY OBJE) BE))
(agent
~T(trace (clause v agent))

(clause .

(v

be2 .
E('ENT SUBJ) (((OWN STATE) OBJE) BE))
agent
((trace (clause v object))
(clause

(type relative)

(tns present)

(aspect (passive))

v
(suppl
((*ORG SUBJ)
((®*INAN OBJE)
((‘ORG RECIPIENT)
(((((;6>R!;:CIPIENT SUBJ) HAVE) CAUSE)

VE))))
Ea ent (s1 (MAN)))

((‘INAN POSS)
((WORK GOAL? (SUBJ THING)))
(number many))
(location
~(London (THIS (WHERE POINT)))) NN
(state colour ‘(val (*var* #dummy-val))))))))
(recipient (querT'(‘DUMM M))

b) after post-editing
(claus '

use
(type question)
(tns present)

v

g(‘EN’tI;' SUBJ) (((OWN STATE) OBJE) BE))
agen
(Ttrace (clause v object))
(clause
(type relative)
(tns present)
(aspect (passive))
v
(supply1
((®*ORG SUBJ)
((*INAN OBJE)
(('ORG RECIPIENT)
(((((->RECIPIENT SUBJ) HAVE) CAUSE) GOAL) GIVE))))
(agent (S1 (MAN)))
(object }
((®INAN POSS) ((WORK GOAL) (SUBJ THING)))
(number many

1 ti Lond THIS (WHERE POINT)ID)]
(state colour (Sai'ﬁ?qu%?’y((nunﬁ%%) 5 ")

Fic. 7

supported by linguistic generalisations. The problem is removed, or significantly
reduced, if the analyser depends directly on database-specific semantics, but this
approach is not allowed here. However, since such compounds can only, in many
cases, be interpreted by exploiting pragmatic knowledge, the current intention is to
seek to proceed as far as possible with interpretation based on the ordinary analyser
semantics, relying on the comparative richness of this apparatus, but to allow
additional reference, in a strictly controlled way, to the independent semantics of the
data language. The attempt must be made to maintain a genuine distinction between
building the analyser on database-specific information and allowing it to call on

38 Natural language analyser for database access

such information. At the same time, problems like the compound noun one make it
quite clear that the system front-end processing cannot be expected to be a single
pass exploiting first language, and then database, knowledge: some interactive
feedback between the various components of the interpreter is to be expected. Inter-
action is also implied by the need to handle proper names.

The ease with which this interaction can be achieved must follow from the charac-
terisation of the natural language—database connection which is central to the
operation of the translation component. The translator has to replace expressions of
the meaning representation language by those of the data specification language. It
is not yet clear whether this can be more successfully done by a production rule
strategy or by the invocation of some knowledge structure, say in the form of a
semantic net. The natural starting point, however, for constructing the translator is
the rich resources of the meaning representation language: The main challenge of
the project is to build the translator; and though, as mentioned, work on this has
barely begun, something needs to be said here about the proposed foundation for it.

The meaning representation language provides for the syntactically and
semantically well-formed and explicit characterisation of question content. The
database will be characterised both logically, i.e., syntactically and semantically,
and administratively by the formal data language, and its content will be represented
by the well-organised and explicit data descriptions allowed by the data language.
The hypothesis is that, when viewed through the medium of the meaning representa-
tion language described above, the natural language and the data language will be
found to have a substantial overlap: i.e., that while it may not be so easy to see the
connection between the words and sentences of the natural language and the terms
and expressions of the data language, it is much easier, given the conceptual and
structural normalisation of the meaning representations output by the analyser, to
connect these with the database; and in making this connection the semantic
primitives have an important role. While it should be possible to characterise the
message forms of the data language using some or all of the semantic apparatus
described earlier, it may not be possible to characterise, for an expanding database,
all of the lexical items represented by the values of attributes in the database. But it
should be possible to characterise, using the semantic primitives, the names of entity
types, attributes, and relations; and this may provide enough leverage to construct
appropriate search queries. It is not being suggested that the words and forms of the
database are exactly the same as those of the natural language, only that they may be
characterised using the same semantic apparatus based on category and case
primitives. For example while the English word ‘‘supplier’’ and the database name
‘supplier’ may not mean the same, they will have some conceptual overlap which can
be captured by common primitives in their dictionary entries; and this may be
sufficient to derive the appropriate query term from the question word. Similar
considerations apply to the mapping of question word relationships onto query term
relationships via case primitives. We are now beginning work on the attempt to
provide these data language characterisations, and hence to build translation rules
between meaning representations and search specifications, for a very simple
database.

ACKNOWLEDGEMENT

This research is supported by a Science Research Council grant.

B. K. BoGuraev aND K. SPARCK JONES 39

REFERENCES

Boguraev, B. K. (1979) Automatic resolution of linguistic ambiguities. Ph.D. Thesis,
University of Cambridge (Technical Report No. 11, Computer Laboratory, University of
Cambridge).

Bronnenberg, W. J. H. J., Bunt, H. C., Landsbergen, S. P. J., Scha, R. J. H., Schoen-
makers, W. J. and van Utteren, E. P. C. (1979) The question answering system
PHLIQAL. Natural language question answering systems. (L. Bolc, ed.) London:
Macmillan.

Harris, L. R. (1977) User oriented data base query with the ROBOT natural language query
system. International Journal of Man-Machine Studies, 9, 697-713.

Hendrix, D. G., Sacerdoti, E. D., Sagalowicz, D. and Slocum, J. (1978) Developing a
natural language interface to complex data. ACM Transactions on Database Systems
3, 105-147.

Konolige, K. (1979) A framework for a portable natural language interface to large data
bases. Menlo Park, Calif.: SRI International (Technical Note 197).

Riesbeck, C. K. (1975) Conceptual understanding. Conceptual information processing. (R. C.
Schank, ed.) Amsterdam: North-Holland.

Small, S. (1980) Word expert parsing: a theory of distributed word-based natural language
understanding. Ph.D. Thesis, University of Maryland (Report TR-954, Department of
Computer Science, University of Maryland).

Waltz, D. L. (1978) An English language question answering system for a large relational
database. Communications of the ACM 21, 526-539. ‘

Wilks, Y. A. (1975a) An intelligent analyser and understander of English. Communications of
the ACM 18, 264-274.

Wilks, Y. A. (1975b) A preferential, pattern-seeking semantics for natural language inference.
Artificial Intelligence 6, 53—74.

Wilks, Y. A. (1977) Good and bad arguments about semantic primitives. Communication
and Cognition 10, 181-221.

Woods, W. A., Kaplan, R. M. and Nash-Webber, B. (1972) The lunar sciences natural
language information system. Cambridge, Mass.: Bolt, Beranek and Newman Inc.
(Report 2378).

Woods, W. A. (1977) Lunar rocks in natural English: explorations in natural language
question answering. Linguistic structures processing. (A. Zampolli, ed.) Amsterdam:
North-Holland.

