
Three
AUTOMATIC
CLASSIFICATION

Introduction

In this chapter I shall attempt to present a coherent account of 
classification in such a way that the principles involved will be 
sufficiently understood for anyone wishing to use classification 
techniques in IR to do so without too much difficulty. The emphasis 
will be on their application in document clustering, although many of 
the ideas are applicable to pattern recognition, automatic medical 
diagnosis, and keyword clustering.

A formal definition of classification will not be attempted; for our 
purposes it is sufficient to think of classification as describing the 
process by which a classificatory system is constructed. The word 
‘classification’ is also used to describe the result of such a process. 
Although indexing is often thought of (wrongly I think) as 
‘classification’ we specifically exclude this meaning. A further 
distinction to be made is between ‘classification’ and ‘diagnosis’. 
Everyday language is very ambiguous on this point:

‘How would you classify (identify) this?’
‘How are these best classified (grouped)?’
The first example refers to diagnosis whereas the second talks about 

classification proper. These distinctions have been made before in the 
literature by Kendall1 and Jardine and Sibson2.

In the context of information retrieval, a classification is required 
for a purpose. Here I follow Macnaughton-Smith3 who states: ‘All 
classifications, even the most general are carried out for some more or 
less explicit “special purpose” or set of purposes which should
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influence the choice of [classification] method and the results 
obtained.’ The purpose may be to group the documents in such a way 
that retrieval will be faster or alternatively it may be to construct a 
thesaurus automatically. Whatever the purpose the ‘goodness’ of the 
classification can finally only be measured by its performance during 
retrieval. In this way we can side-step the debate about ‘natural’ and 
‘best’ classifications and leave it to the philosophers (see for example 
Hempel4).

There are two main areas of application of classification methods in 
IR:

(1) keyword clustering;
(2) document clustering.

The first area is very well dealt with in a recent book by Sparck Jones5. 
Document clustering, although recommended forcibly by Salton and 
his co-workers, has had very little impact. One possible reason is that 
the details of Salton’s work on document clustering became submerged 
under the welter of experiments performed on the SMART system. 
Another is possibly that as the early enthusiasm for clustering waned, 
the realisation dawned that significant experiments in this area required 
quantities of expensive data and large amounts of computer time.

Good6 and Fairthorne7 were amongst the first to recommend that 
automatic classification might prove useful in document retrieval. A 
clear statement of what is implied by document clustering was made 
early on by R. M. Hayes8 : ‘We define the organisation as the grouping 
together of items (e.g. documents, representations of documents) which 
are then handled as a unit and lose, to that extent, their individual 
identities. In other words, classification of a document into a 
classification slot, to all intents and purposes identifies the document 
with that slot. Thereafter, it and other documents in the slot are treated 
as identical until they are examined individually. It would appear, 
therefore, that documents are grouped because they are in some sense 
related to each other; but more basically, they are grouped because 
they are likely to be wanted together, and logical relationship is the 
means of measuring this likelihod.’ In the main people have achieved 
the ‘logical organisation’ in two different ways. Firstly through direct 
classification of the documents, and secondly via the intermediate 
calculation of a measure of closeness between documents. The first 
approach has proved theoretically to be intractable so that any 
experimental test results cannot be considered to be reliable. The 
second approach to classification is fairly well documented now, and 
above all, there are some forceful arguments recommending it in a 
particular form. It is this approach which is to be emphasised here.

The efficiency of document clustering has been emphasised by 
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Salton9, he says: ‘Clearly in practice it is not possible to match each 
analysed document with each analysed search request because the time 
consumed by such operation would be excessive. Various solutions have 
been proposed to reduce the number of needed comparisons between 
information items and requests. A particular promising one generates 
groups of related documents, using an automatic document matching 
procedure. A representative document group vector is then chosen for 
each document group, and a search request is initially checked against 
all the group vectors only. Thereafter, the request is checked against 
only those individual documents where group vectors show a high score 
with the request.’ Salton believes that although document clustering 
saves time it necessarily reduces the effectiveness of a retrieval system. I 
believe a case has been made showing that on the contrary document 
clustering has potential for improving the effectiveness (Jardine and 
Van Rijsbergen10).

Measures of association

Some classification methods are based on a binary relationship between 
objects. On the basis of this relationship a classification method can 
construct a system of clusters. The relationship is described variously as 
‘similarity’, ‘association’ and ‘dissimilarity’. Ignoring dissimilarity for 
the moment as it will be defined mathematically later, the other two 
terms mean much the same except that ‘association’ will be reserved for 
the similarity between objects characterised by discrete-state attributes. 
The measure of similarity is designed to quantify the likeness between 
objects so that if one assumes it is possible to group objects in such a 
way that an object in a group is more like the other members of the 
group than it is like any object outside the group, then a cluster method 
enables such a group structure to be discovered.

Informally speaking, a measure of association increases as the 
number or proportion of shared attribute states increases. Numerous 
coefficients of association have been described in the literature, see for 
example Goodman and Kruskal11’12, Kuhns13, Cormack14 and Sneath 
and Sokal15. Several authors have pointed out that the difference in 
retrieval performance achieved by different measures of association is 
insignificant, providing that these are appropriately normalised. 
Intuitively one would expect this since most measures incorporate the 
same information. Lerman16 has investigated the mathematical 
relationship between many of the measures and has shown that many 
are monotone with respect to each other. It follows that a cluster 
method depending only on the rank-ordering of the association values 
would give identical clusterings for all these measures.
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There are five commonly used measures of association in 
information retrieval. Since in information retrieval documents and 
requests are most commonly represented by term or keyword lists, I 
shall simplify matters by assuming that an object is represented by a set 
of keywords and that the counting measure 1 . | gives the size of the set. 
We can easily generalise to the case where the keywords have been 
weighted, by simply choosing an appropriate measure (in the 
measure-theoretic sense).

The simplest of all association measures is

I* f'1 *1 Simple matching coefficient

which is the number of shared index terms. This coefficient does not 
take into account the sizes of X  and Y. The following coefficients 
which have been used in document retrieval take into account the 
information provided by the sizes of X  and Y.

Dice’s coefficient 

Jaccard’s coefficient

Cosine coefficient

l * n  Y\ 
\X\ + \Y\

I i n  y \ 
|* U  Y\

\x  n  y \ 
m x in
u rn  n

min ( in ,  in )
Overlap coefficient

These may all be considered to be normalised versions of the simple 
matching coefficient. Failure to normalise leads to counter intuitive 
results as the following example shows:

If S t(x ,  y) = u r n  n S2(X, Y)
2 | i n  y I
in  + m

then \Xi\= 1 1 ^ 1 =  1 \X1n Y i \ = l=>S1 = . l S 2 =l

1* 21 = io  \y 2\ = io  l*2 n r 2i = i=>s ,  = i s 2 = 1/10

S i(* i ,* i)  = S i (X2, Y2) which is clearly absurd since X x and Y t are 
identical representatives whereas X 2 and Y 2 are radically different. The 
normalisation for S 2 , scales it between 0 and 1, maximum similarity 
being indicated by 1.

Doyle17 hinted at the importance of normalisation in an amusing 
way: ‘One would regard the postulate “All documents are created 
equal” as being a reasonable foundation for a library description. 
Therefore one would like to count either documents or things which 
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pertain to documents, such as index tags, being careful of course to deal 
with the same number of index tags for each document. Obviously, if 
one decides to describe the library by counting the word tokens of the 
text as “of equal interest” one will find that documents contribute to 
the description in proportion to their size, and the postulate “Big 
documents are more important than little documents” is at odds with 
“All documents are created equal” .’

I now return to the promised mathematical definition of 
dissimilarity. The reasons for preferring the ‘dissimilarity’ point of view 
are mainly technical and will not be elaborated here. Interested readers 
can consult Jardine and Sibson2 on the subject, only note that any 
dissimilarity function can be transformed into a similarity function by a 
simple transformation of the form s = (1 + g?)_1 but the reverse is not 
always true.

If P is the set of objects to be clustered, a pairwise dissimilarity 
coefficient D is a function from P x P to the non-negative real numbers. 
D, in general, satisfies the following conditions

D l D(X, Y )>  0 for allX, Y e P

D2D(X, X) = 0 for all A e P

D 3 D { X , Y ) = D{ Y , X )  for all X . Y e P

Informally, a dissimilarity coefficient is a kind of ‘distance’ function. In 
fact many of the dissimilarity coefficients satisfy the triangle 
inequality:

DA D(X, Y) <  D(X, Z ) + D(Y, Z)

which may be recognised as the theorem from Euclidean geometry 
which states that the sum of the lengths of two sides of a triangle is 
always greater than the length of the third side.

An example of a dissimilarity coefficient satisfying D\ — DA is

\X A Y\
\X\ + \Y\

where ( I A  Y) = (X  U y) -  (X  n  Y) is the symmetric difference of 
sets X  and Y. It is simply related to Dice’s coefficient by

2\XC\Y\  _ \ X A Y \
1 \x \ + \y \ ixi + in

and is monotone with respect to Jaccard’s coefficient subtracted from 
1. To complete the picture I shall express this last DC in a different 
form. Instead of representing each document by a set of keywords we 
represent it by a binary string where the absence or presence of the z’th
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keyword is indicated by a zero or one in the /th position respectively. 
In that case

+ Yy(

where summation is over the total number of different keywords in the 
document collection.

Salton considered document representatives as binary vectors 
embedded in an ^-dimensional Euclidean space, where n is the total 
number of index terms.

\X H Y\/\X\ x |K| can then be interpreted as the cosine of the 
angular separation of the two binary vectors X  and Y. This readily 
generalises to the case where X  and Y  are arbitrary real vectors (i.e. 
weighted keyword lists) in which case we write {X,Y)!\X\\ l|K||where 
(X,Y)  is the inner product and || . || the length of the vector.

Finally some authors have attempted a probability model. They 
measured association in terms of deviation from independence in the 
occurrence of index terms in two representative strings (see Maron and 
Kuhns18).

Classification methods

Let me start with a description of the kind of data for which 
classification methods are appropriate. The data consists of objects and 
their corresponding descriptions. The objects may be documents, 
keywprds, hand written characters, or species (in the last case the 
objects themselves are classes as opposed to individuals). The 
descriptors come under various names depending on their structure:

(1) multi-state attributes (e.g. colour)
(2) binary-state (e.g. keywords)
(3) numerical (e.g. hardness scale, or weighted keywords)
(4) probability distributions.

The fourth category of descriptors is applicable when the objects are 
classes. For example, the leaf width of a species of plants may be 
described by a normal distribution of a certain mean and variance. It is 
in an attempt to summarise and simplify this kind of data that 
classification methods are used.

Some excellent surveys of classification methods now exist, to name 
but a few, Ball19, Cormack14 and Dorofeyuk20. In fact methods of 
classification are now so numerous, that Good21 has found it necessary 
to give a classification of classification.

Sparck Jones22 has provided a very clear intuitive break down of 
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classification methods in terms of some general characteristics of the 
resulting classificatory system. In what follows the primitive notion of 
‘property’ will mean feature of an object. I quote:

‘(1) Relation between properties and classes
(a) monothetic
(b) polythetic

(2) Relation between objects and classes
(a) exclusive
(b) overlapping

(3) Relation between classes and classes
(a) ordered
(b) unordered

The first category has been explored thoroughly by numerical 
taxonomists. An early statement of the distinction between monothetic 
and polythetic is given by Beckner23: ‘A class is ordinarily defined by 
reference to a set of properties which are both necessary and sufficient 
(by stipulation) for membership in the class. It is possible, however, to 
define a group K  in terms of a set G of properties /)  ,/2,. . . ,fn in a 
different manner. Suppose we have an aggregate of individuals (we shall 
not yet call them a class) such that

(1) each one possesses a large (but unspecified) number of the
properties in G;

(2) each /  in G is possessed by large numbers of these individuals;
and

(3) no f i n  G is possessed by every individual in the aggregate.’

The first sentence of Beckner’s statement refers to the classical 
Aristotelian definition of a class, which is now termed monothetic. The 
second part defines polythetic.

To illustrate the basic distinction consider the following example 
(Figure 3.1) of 8 individuals (1-8) and 8 properties (A-H). The 
possession of a property is indicated by a plus sign. The individuals 1-4 
constitute a polythetic group each individual possessing three out of 
four of the properties A,B,C,D. The other 4 individuals can be split into 
two monothetic classes {5,6} and {7,8}. The distinction between 
monothetic and polythetic is a particularly easy one to make providing 
the properties are of a simple kind, e.g. binary-state attributes. When 
the properties are more complex the definitions are rather more 
difficult to apply, and in any case are rather arbitrary.

The distinction between overlapping and exclusive is important both 
from a theoretical and practical point of view. Many classification 
methods can be viewed as data-simplification methods. In the process 
of classification information is discarded so that the members of one
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A B C D E F G H  

1 + + +

2 + + + 

3 + + +

u + + +

5 + + +

6 + + +

7 + + +

8 + + +

Figure 3.1. An illustration o f  the difference between monothetic and polythetic

class are indistinguishable. It is in an attempt to minimise the amount 
of information thrown away, or to put it differently, to have a 
classification which is in some sense ‘closest’ to the original data, that 
overlapping classes are allowed. Unfortunately this plays havoc with the 
efficiency of implementation for a particular application. A 
compromise can be adopted in which the classification method 
generates overlapping classes in the first instance and is finally ‘tidied 
up’ to give exclusive classes.

An example of an ordered classification is a hierarchy. The classes 
are ordered by inclusion, i.e. the classes at one level are nested in the 
classes at the next level. To give a simple example of unordered 
classification is more difficult. Unordered classes generally crop up in 
automatic thesaurus construction. The classes sought for a thesaurus are 
those which satisfy certain homogeneity and isolation conditions but in 
general cannot be simply related to each other. (See for example the 
use and definition of clumps in Needham24.) For certain applications 
ordering is irrelevant, whereas for others such as document clustering if 
is of vital importance. The ordering enables efficient search strategies to 
be devised.

The discussion about classification has been purposely vague up to 
this point. Although the break down scheme discussed gives some 
insight into classification methods, it is of little use when discussing any 
particular classification method. Like all categorisations it isolates some 
ideal types; but any particular instance will often fall between 
categories or be a member of a large proportion of categories.
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Let me now be more specific about current (and past) approaches to 
classification, particularly in the context of information retrieval.

The cluster hypothesis

Before describing the battery of classification methods that are now 
used in information retrieval, I should like to discuss the underlying 
hypothesis for their use in document clustering. This hypothesis may be 
simply stated as follows: closely associated documents tend to be 
relevant to the same requests. I shall refer to this hypothesis as the 
Cluster Hypothesis.

A basic assumption in retrieval systems is that documents relevant to 
a request are separated from those which are not relevant, i.e. that the 
relevant documents are more like one another than they are like 
non-relevant documents. Whether this is true for a collection can be 
tested as follows. Compute the association between all pairs of 
documents:

(a) both of which are relevant to a request, and
(b) one of which is relevant and the other non-relevant.

Summing over a set of requests gives the relative distribution of 
relevant-relevant (R-R) and relevant-non-relevant (R-N-R) 
associations of a collection. Plotting the relative frequency against 
strength of association for two hypothetical collections X and Y we 
might get distributions as shown in Figure 3.2.

From these it is apparent:

(a) that the separation for collection X is good while for Y it is 
poor; and

Collection X Collection Y

Figure 3.2. R -R  is the distribution o f  relevant-relevant associations, arid R-N-R is 
the distribution o f  relevant-non-relevant associations
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(b) that the strength of the association between relevant documents 
is greater for X than for Y.

It is this separation between the distributions that one attempts to 
exploit in document clustering. It is on the basis of this separation that 
I would claim that document clustering can lead to more effective 
retrieval than say a linear search. A linear search ignores the relationship 
that exists between documents. If the hypothesis is satisfied for a 
particular collection (some promising results have been published in 
Jardine and Van Rijsbergen10, and Van Rijsbergen and Sparck Jones25 
for three test collections), then it is clear that structuring the collection 
in such a way that the closely associated documents appear in one class, 
will not only speed up the retrieval but may also make it more 
effective, since a class once found will tend to contain only relevant and 
no non-relevant documents.

I should add that these conclusions can only be verified, finally, by 
experimental work on a large number of collections. One reason for this 
is that although it may be possible to structure a document collection 
so that relevant documents are brought together there is no guarantee 
that a search strategy will infallibly find the class of documents 
containing the relevant documents. It is a matter for experimentation 
whether one can design search strategies which will do the job. So far 
most experiments in document clustering have been moderately 
successful but by no means conclusive.

Note that the Cluster Hypothesis refers to given document 
descriptions. The object of making permanent or temporary changes to 
a description by such techniques as keyword classifications can 
therefore be expressed as an attempt to increase the distance between 
the two distributions R-R and R-N-R. That is, we want to make it 
more likely that we will retrieve relevant documents and less likely that 
we will retrieve non-relevant ones.

As can be seen from the above, the Cluster Hypothesis is a 
convenient way of expressing the aim of such operations as document 
clustering. Of course, it does not say anything about how the separation 
is to be exploited.

The use of clustering in information retrieval

There are a number of discussions in print now which cover the use of 
clustering in IR. The most important of these are by Litofsky26, 
Crouch27, Prywes and Smith28 and Fritzche29. Rather than repeat their 
chronological treatment here, I shall instead try to isolate the essential 
features of the various cluster methods.
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In choosing a cluster method for use in experimental IR, two, often 
conflicting, criteria have frequently been used. The first of these, and in 
my view the most important at this stage of the development of the 
subject, is the theoretical soundness of the method. By this I mean that 
the method should satisfy certain criteria of adequacy. To list some of 
the more important of these:

(1) the method produces a clustering which is unlikely to be altered 
drastically when further objects are incorporated, i.e. it is stable 
under growth;

(2) the method is stable in the sense that small errors in the 
description of the objects lead to small changes in the clustering;

(3) the method is independent of the initial ordering of the objects.
These conditions have been adapted from Jardine and Sibson2. The 
point is that any cluster method which does not satisfy these conditions 
is unlikely to produce any meaningful experimental results. 
Unfortunately not many cluster methods do satisfy these criteria, 
probably because algorithms implementing them tend to be less 
efficient than ad hoc clustering algorithms.

The-second criterion for choice is the efficiency of the clustering 
process in terms of speed and storage requirements. In some 
experimental work this has been the overriding consideration. But it 
seems to me a little early in the day to insist on efficiency even before 
we know much about the behaviour of clustered files in terms of the 
effectiveness of retrieval (i.e. the ability to retrieve wanted and hold 
back unwanted documents). In any case, many of the ‘good’ theoretical 
methods (ones which are likely to produce meaningful experimental 
results) can be modified to increase the efficiency of their clustering 
process.

Efficiency is really a property of the algorithm implementing the 
cluster method. It is sometimes useful to distinguish the cluster method 
from its algorithm, but in the context of IR this distinction becomes 
slightly less than useful since many cluster methods are defined by their 
algorithm, so no explicit mathematical formulation exists.

In the main, two distinct approaches to clustering can be identified:

(1) the clustering is based on a measure of similarity between the 
objects to be clustered;

(2) the cluster method proceeds directly from the object 
descriptions.

The most obvious examples of the first approach are the graph 
theoretic methods which define clusters in terms of a graph derived 
from the measure of similarity. This approach is best explained with an 
example (see Figure 3.3). Consider a set of objects to be clustered. We
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Objects: {1,2,3,4,5,61

Sim ilarity m a tr ix : 1

2 .6

3 . .6 .8

4 .9 .7 .7

5 .9 .6 .6 .9

6 .5 .5 .5 .9

1 2 3 4

Threshold: .89

G raph:

5 • 2

*6

•  3

Figure 3.3. A similarity coefficient for 6 objects and the graph that can be derived 
from it by thresholding

compute a numerical value for each pair of objects indicating their 
similarity. A graph corresponding to this set of similarity values is 
obtained as follows. A threshold value is decided upon, and two objects 
are considered linked if their similarity value is above the threshold. 
The cluster definition is simply made in terms of the graphical 
representation.

A string is a connected sequence of objects from some starting point.
A connected component is a set of objects such that each object is 

connected to at least one other member of the set and the set is 
maximal with respect to this property.

A maximal complete subgraph is a subgraph such that each node is 
connected to every other node in the subgraph and the set is maximal 
4 0
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Figure 3.4. Some possible definitions o f  clusters in terms o f  subgraphs

with respect to this property, i.e. if one further node were included 
anywhere the completeness condition would be violated. An example 
of each is given in Figure 3.4. These methods have been used 
extensively in keyword clustering by Sparck Jones and Jackson30, 
Augustson and Minker31 and Vaswani and Cameron32.

A large class of hierarchic cluster methods is based on the initial 
measurement of similarity. The most important of these is single-link 
which is the only one to have been extensively used in -document 
retrieval. It satisfies all the criteria of adequacy mentioned above. In
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fact, Jardine and Sibson2 have shown that under a certain number of 
reasonable conditions single-link is the only hierarchic method 
satisfying these important criteria. It will be discussed in some detail in 
the next section.

A further class of cluster methods based on measurement of 
similarity is the class of so-called ‘clump’ methods. They proceed by 
seeking sets which satisfy certain cohesion and isolation conditions 
defined in terms of the similarity measure. The computational 
difficulties of this approach have largely caused it to be abandoned. An 
attempt to generate a hierarchy of clumps was made by Van 
Rijsbergen33 but as expected, the cluster definition was so strict that 
very few sets could be found to satisfy it.

Efficiency has been the overriding consideration in the definition of 
the algorithmically defined cluster methods used in IR. For this reason 
most of these methods have tended to proceed directly from object 
description to final classification without an intermediate calculation of 
a similarity measure. Another distinguishing characteristic of these 
methods is that they do not seek an underlying structure in the data 
but attempt to impose a suitable structure on it. This is achieved by 
restricting the number of clusters and by bounding the size of each 
cluster.

Rather than give a detailed account of all the heuristic algorithms, I 
shall instead discuss some of the main types and refer the reader to 
further developments by citing the appropriate authors. Before 
proceeding we need to define some of the concepts used in designing 
these algorithms.

The most important concept is that of cluster representative 
variously called cluster profile, classification vector, or centroid. It is 
simply an object which summarises and represents the objects in the 
cluster. Ideally it should be near to every object in the cluster in some 
average sense; hence the use of the term centroid. The similarity of the 
objects to the representative is measured by a matching function 
(sometimes called similarity or correlation function). The algorithms 
also use a number of empirically determined parameters such as:

(1) the number of clusters desired;
(2) a minimum and maximum size for each cluster;
(3) a threshold value on the matching function, below which an 

object will not be included in a cluster;
(4) the control of overlap between clusters;
(5) an arbitrarily chosen objective function which is optimised.

Almost all of the algorithms are iterative, i.e. the final classification is 
achieved by iteratively improving an intermediate classification. 
Although most algorithms have been defined only for one-level 
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classification, they can obviously be extended to multi-level 
classification by the simple device of considering the clusters at one 
level as the objects to be classified at the next level.

Probably the most important of this kind of algorithm is Rocchio’s 
clustering algorithm34 which was developed on the SMART project. It 
operates in three stages. In the first stage it selects (by some criterion) a 
number of objects as cluster centres. The remaining objects are then 
assigned to the centres or to a ‘rag-bag’ cluster (for the misfits). On the 
basis of the initial assignment the cluster representatives are computed 
and all objects are once more assigned to the clusters. The assignment 
rules are explicitly defined in terms of thresholds on a matching 
function. The final clusters may overlap (i.e. an object may be assigned 
to more than one cluster). The second stage is essentially an iterative 
step to allow the various input parameters to be adjusted so that the 
resulting classification meets the prior specification of such things as 
cluster size, etc. more nearly. The third stage is for ‘tidying up’. 
Unassigned objects are forcibly assigned, and overlap between clusters is 
reduced.

Most of these algorithms aim at reducing the number of passes that 
have to be made of the file of object descriptions. Hence the name 
‘Single-Pass Algorithm’ for a certain number of them. Basically they 
operate as follows:

(1) the object descriptions are processed serially;
(2) the first object becomes the cluster representative of the first 

cluster;
(3) each subsequent object is matched against all cluster 

representatives existing at its processing time;
(4) a given object is assigned to one cluster (or more if overlap is 

allowed) according to some condition on the matching function;
(5) when an object is assigned to a cluster the representative for that 

cluster is recomputed;
(6) if an object fails a certain test it becomes the cluster 

representative of a new cluster.
Once again the final classification is dependent on input parameters 
which can only be determined empirically (and which are likely to be 
different for different sets of objects) and must be specified in advance.

The simplest version of this kind of algorithm is probably one due to 
Hill35. Subsequently many variations have been produced mainly the 
result of changes in the assignment rules and definition of cluster 
representatives. (See for example, Rieber and Marathe36, Johnson and 
Lafuente37 and Etzweiler and Martin38.)

Related to the single-pass approach is the algorithm of MacQueen39 
which starts with an arbitrary initial partition of the objects. Cluster
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representatives are computed for the members (sets) of the partition, 
and objects are reallocated to the nearest cluster representative.

A third type of algorithm is represented by the work of Dattola40. 
His algorithm is based on an earlier algorithm by Doyle. As in the case 
of MacQueen, it starts with an initial arbitrary partition and set of 
cluster representatives. The subsequent processing reallocates the 
objects, some ending up in a ‘rag-bag’ cluster (cf. Rocchio). After each 
reallocation the cluster representative is recomputed, but the new 
cluster representative will only replace the old one if the new 
representative turns out to be nearer in some sense to the objects in the 
new cluster than the old representative. Dattola’s algorithm has been 
used extensively by Murray41 for generating hierarchic classifications. 
Related to Dattola’s approach is that due to Crouch27. Crouch spends 
more time obtaining the initial partition (he calls them categories) and 
the corresponding cluster representatives. The initial phase is termed 
the ‘categorisation stage’, which is followed by the ‘classification stage’. 
The second stage proceeds to reallocate objects in the normal way. His 
work is of some interest because of the extensive comparisons he made 
between the algorithms of Rocchio, Rieber and Marathe, Bonner (see 
below) and his own.

One further algorithm that should be mentioned here is that due to 
Litofsky26. His algorithm is designed only to work for objects described 
by binary state attributes. It uses cluster representatives and matching 
functions in an entirely different way. The algorithm shuffles objects 
around in an attempt to minimise the average number of different 
attributes present in the members of each cluster. The clusters are 
characterised by sets of attribute values where each set is the set of 
attributes common to all members of the cluster. The final 
classification is a hierarchic one. (For further details about this 
approach see also Lefkovitz42.)

Finally, the Bonner43 algorithm should be mentioned. It is a hybrid 
of the graph-theoretic and heuristic approaches. The initial clusters are 
specified by graph-theoretic methods (based on an association 
measure), and then the objects are reallocated according to conditions 
on the matching function.

The major advantage of the algorithmically defined cluster methods 
is their speed: order n log n (where n is the number of objects to be 
clustered) compared with order n2 for the methods based on 
association measures. However, they have disadvantages. The final 
classification depends on the order in which the objects are input to the 
cluster algorithm, i.e. it suffers from the defect of order dependence. In 
addition the effects of errors in the object descriptions are 
unpredictable.

One obvious omission from the list of cluster methods is the group 
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of mathematically or statistically based methods such as Factor 
Analysis and Latent Class Analysis. Although both methods were 
originally used in IR (see Borko and Bernick44, Baker45) they have now 
largely been superseded by the cluster methods described above.

The method of single-link avoids the disadvantages just mentioned. 
Its appropriateness for document clustering is discussed here.

Single-link

The dissimilarity coefficient is the basic input to a single-link clustering 
algorithm. The output is a hierarchy with associated numerical levels 
called a dendrogram. Frequently the hierarchy is represented by a tree 
structure such that each node represents a cluster. The two 
representations are shown side by side in Figure 3.5 for the same set of 
objects {A,B,C,D,E}. The clusters are: {A,B,}, {C}, {D}, {E} at level L j , 
{A,B}, {C,D,E} at level L2, and {A,B,C,D,E} at level L3. At each level of 
the hierarchy one can identify a set of classes, and as one moves up the 
hierarchy the classes at the lower levels are nested in the classes at the 
higher levels. A mathematical definition of a dendrogram exists, but is 
of little use, so will be omitted. Interested readers should consult 
Jardine and Sibson2.

L3

Figure 3.5. A dendrogram with corresponding tree

To give the reader a better feel for a single-link classification, here is 
a worked example (see Figure 3.6). A DC (dissimilarity coefficient) can 
be characterised by a set of graphs, one for each value taken by the DC. 
The different values taken by the DC in the example are L= .1, .2, .3, .4. 
The graph at each level is given by a set of vertices corresponding to 
the objects to be clustered, and any two vertices are linked if their 
dissimilarity is at most equal to the value of the level L. It should be 
clear that these graphs characterise the DC completely. Given the
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Graphs and clusters:

Figure 3.6. To show how single-link clusters may be derived from the dissimilarity 
coefficient by thresholding it

graphs and their interpretation a DC can be recovered, and vice versa. 
Graphs at values other than those taken by the DC are simply the same 
as at the next smallest value actually taken by the DC, for example, 
compare the graphs at L = .15 and L = .1.

It is now a simple matter to define single-link in terms of these 
graphs; at any level a single-link cluster is precisely the set of vertices of 
a connected component of the graph at that level. In the diagram I have 
enclosed each cluster with a dotted line. Note that whereas the graphs 
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at any two distinct values taken by the DC will be different, this is not 
necessarily the case for the corresponding clusters at those levels. It 
may be that by increasing the level the links introduced between 
vertices do not change the total number of connected vertices in a 
component. For example the clusters at levels .3 and .4 are the same. 
The hierarchy is achieved by varying the level from the lowest possible 
value, increasing it through successive values of the DC until all objects 
are contained in one cluster. The reason for the name single-link is now 
apparent: for an object to belong to a cluster it needs to be linked to 
only one other member of the cluster.

This description immediately leads to an inefficient algorithm for 
the generation of single-link classes. It was demonstrated in the example 
above. It simply consists of thresholding the DC at increasing levels of 
dissimilarity. The binary connection matrices are then calculated at 
each threshold level, from which the connected components can easily 
be extracted. This is the basis for many published single-link algorithms. 
From the point of view of IR, where one is trying to construct a 
searchable tree it is too inefficient (see Van Rijsbergen46 for an 
appropriate implementation).

The appropriateness o f  stratified hierarchic cluster methods

There are many other hierarchic cluster methods, to name but a few: 
complete-link, average-link, etc. For a critique of these methods see 
Sibson47. My concern here is to indicate their appropriateness for 
document retrieval. It is as well to realise that the kind of retrieval 
intended is one in which the entire cluster is retrieved without any 
further subsequent processing of the documents in the cluster. This is in 
contrast with the methods proposed by Rocchio, Litofsky, and Crouch 
who use clustering purely to help limit the extent of a linear search.

Stratified systems of clusters are appropriate because the level of a 
cluster can be used in retrieval strategies as a parameter analogous to 
rank position or matching function threshold in a linear search. 
Retrieval of a cluster which is a good match for a request at a low level 
in the hierarchy tends to produce high precision* but low recall*; just 
as a cut-off at a low rank position in a linear search tends to yield high 
precision but low recall. Similarly, retrieval of a cluster which is a good 
match for a request at a high level in the hierarchy tends to produce 
high recall but low precision. Hierarchic systems of clusters are 
appropriate for three reasons. First, very efficient strategies can be 
devised to search a hierarchic clustering. Secondly, construction of a

* See introduction for definition.
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hierarchic system is much faster than construction of a non-hierarchic 
(that is, stratified but overlapping) system of clusters. Thirdly, the 
storage requirements for a hierarchic structure are considerably less 
than for a non-hierarchic structure, particularly during the classification 
phase.

Given that hierarchic methods are appropriate for document 
clustering the question arises: ‘Which method?’ The answer is that 
under certain conditions (made precise in Jardine and Sibson2) the only 
acceptable stratified hierarchic cluster method is single-link. Let me 
immediately qualify this by saying that it applies to a method which 
operates from a dissimilarity coefficient (or some equivalent variant), 
and does not take into account methods based directly on the object 
descriptions.

Implementation of classification methods

It is fairly difficult to talk about the implementation of an automatic 
classification method without at the same time referring to the file 
structure representing it inside the computer. Nevertheless there are a 
few remarks of importance which can be made.

Just as in many other computational problems, it is possible to trade 
core storage and computation time. In experimental IR, computation 
time is likely to be at a premium and a classification process can usually 
be speeded up by using extra storage.

One important decision to be made in any retrieval system concerns 
the organisation of storage. Usually part of the file structure will be 
kept in fast store and the rest on backing store. In experimental IR we 
are interested in a flexible system and getting experiments done 
quickly. Therefore, frequently much or all of a classification structure 
is kept in fast store although this would never be done in an operational 
system where the document collections are so much bigger.

Another good example of the difference in approach between 
experimental and operational implementations of a classification is in 
the permanence of the cluster representatives. In experiments we often 
want to vary the cluster representatives at search time. In fact we 
require that each cluster representative can be quickly specified and 
implemented at search time. Of course, were we to design an 
operational classification, the cluster representatives would be 
constructed once and for all at cluster time.

Probably one of the most important features of a classification 
implementation is that it should be able to deal with a changing and 
growing document collection. Adding documents to the classification 
should not be too difficult. For instance, it should not be necessary to 
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take the document classification ‘off the air’ for lengthy periods to 
update it. So, we expect the classification to be designed in such a way 
that a new batch of documents can be readily inserted without 
reclassifying the entire set of both old and new documents.

Although many classification algorithms claim this feature, the claim 
is almost invariably not met. Because of the heuristic nature of many of 
the algorithms, the updated classification is not the same as it would 
have been if the increased set had been classified from scratch. In 
addition, many of the updating strategies mess up the classification to 
such an extent that it becomes necessary to throw away the 
classification after a series of updates and reclassify completely.

These comments tend to apply to the n log n classification methods. 
Unfortunately they are usually recommended over the n'2 methods for 
two reasons. Firstly because n log n is considerably less than n2, and 
secondly because the time increases only as log n for the n log n 
methods but as n for the n2 methods. On the face of it these are 
powerful arguments. However, I think they mislead. If we assume that 
the n log n methods cannot be updated without reclassifying each time 
and that the n2 methods can (for example single-link), then the correct 
comparison is between

t
X rij log rij and N 2 

1=1

where <  n2 <  . . .  <  nt =N, and t is the number of updates. In the 
limit when n is a continuous variable and the sum becomes an integral 
we are better off with N 2 In the discrete case the comparison depends 
rather on the size of the updates «,• -  So unless we can design an 
n log n dependence as extra documents are added, we may as well stick 
with the n2 methods which satisfy the soundness conditions and 
preserve n2 dependence during updating.

In any case if one is willing to forgo some of the theoretical 
adequacy conditions then it is possible to modify the n2 methods to 
‘break the n2 barrier’. One method is to sample from the document 
collection and construct a core clustering using an n2 method on the 
sample of the documents. The remainder of the documents can then be 
fitted into the core clustering by a very fast assignment strategy, similar 
to a search strategy which has log n dependence. A second method is to 
initially do a coarse clustering of the document collection and then 
apply the finer classification method of the n2 kind to each cluster in 
turn. So, if there are N  documents and we divide into k  coarse clusters 
by a method that has order N  time dependence (e.g. Rieber and 
Marathe’s method) then the total cluster time will be of order 
N  + ?,(N/k)2 which will be less than N2.
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Another comment to be made about n log n methods is that 
although they have this time dependence in theory, examination of a 
number of the algorithms implementing them shows that they actually 
have an n2 dependence (e.g. Rocchio’s algorithm). Furthermore, most 
n log n methods have only been tested on single-level classifications and 
it is doubtful whether they would be able to preserve their n log n 
dependence if they were used to generate hierarchic classifications 
(Senko48).

In experiments where we are often dealing with only a few thousand 
documents we may find that the proportionality constant in the n log n 
method is so large that the actual time taken for clustering is greater 
than that for an n2 method. Croft49 recently found this when he 
compared the efficiency of SNOB (Boulton and Wallace50), an n log n 
cluster method, with single-link. In fact it is possible to implement 
single-link in such a way that the generation of the similarity values is 
overlapped in real time with the cluster generation process.

The implementation of classification algorithms for use in IR is by 
necessity different from implementations in other fields such as for 
example numerical taxonomy. The major differences arise from 
differences in the scale and in the use to which a classification structure 
is to be put.

In the case of scale, the size of the problem in IR is invariably such 
that for cluster methods based on similarity matrices it becomes 
impossible to store the entire similarity matrix, let alone allow random 
access to its elements. If we are to have a reasonably useful cluster 
method based on similarity matrices we must be able to generate the 
similarity matrix in small sections, use each section to update the 
classification structure immediately after it has been generated and then 
throw it away. The importance of this fact was recognised by 
Needham51. Van Rijsbergen46 has described an implementation of 
single-link which satisfies this requirement.

When a classification is to be used in IR, it affects the design of the 
algorithm to the extent that a classification will be represented by a file 
structure which is

(1) easily updated;
(2) easily searched; and
(3) reasonably compact.

Only (3) needs some further comment. It is inevitable that parts of the 
storage used to contain a classification will become redundant during an 
updating phase. This being so it is of some importance to be able to 
reuse this storage, and if the redundant storage becomes excessive to be 
able to process the file structure in such a way that it will subsequently 
reside in one contiguous part of core. This ‘compactness’ is particularly 
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important during experiments in which the file structure is read into 
core before being accessed.

Conclusion

Let me briefly summarise the logical structure of this chapter. It started 
very generally with a descriptive look at automatic classification and its 
uses. It then discussed association measures which form the basis of an 
important class of classification methods. Next came a breakdown of 
classification methods. This was followed by a statement of the 
hypothesis underlying the use of automatic classification in document 
clustering. It went on to examine in some detail the use of classification 
methods in IR leading up to recommendation of single-link for 
document clustering. Finally we made some practical points about 
implementation.

This chapter ended on a rather practical note. We continue in this 
vein in the next chapter where we discuss file structures. These are 
important if we are to appreciate how it is that we can get dictionaries, 
document clustering, search strategies, and such like to work inside a 
computer.

Bibliographic remarks

In recent years a vast literature on automatic classification has been 
generated. One reason for this is that applications for these techniques 
have been found in such diverse fields as Biology, Pattern Recognition, 
and Information Retrieval. The best introduction to the field is still 
provided by Sneath and Sokalls (a much revised and supplemented 
version of their earlier book) which looks at automatic classification in 
the context of numerical taxonomy. Second to this I would 
recommend a collection of papers edited by Cole52.

A book and a report on cluster analysis with a computational 
emphasis are Anderberg53 and Wishart54 respectively. Both give listings 
of Fortran programs for various cluster methods.

Two papers worth singling out are Sibson55 and Fisher and Van 
Ness56. The first gives a very lucid account of the foundations of cluster 
methods based on dissimilarity measures. The second does a detailed 
comparison of some of the more well-known cluster methods (including 
single-link) in terms of such conditions on the clusters as connectivity 
and convexity.

Much of the early work in document clustering was done on the 
SMART project. An excellent idea of its achievement in this area may
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be got by reading ISR-10 (Rocchio34), ISR-19 (Kerchner57), and 
ISR-20 (Murray41). Each has been predominantly concerned with 
document clustering.

There are a number of areas in IR where automatic classification is 
used which have not been touched on in this chapter. Probably the 
most important of these is the use of ‘Fuzzy Sets’ which is an approach 
to clustering pioneered by Zadeh58. Its relationship with the 
measurement of similarity is explicated in Zadeh59. More recently it has 
been applied in document clustering by Negoita60 and Chan61.

One further interesting area of application of clustering techniques is 
in the clustering of citation graphs. A measure of closeness is defined 
between journals as a function of the frequency with which they cite 
one another. Groups of closely related journals can thus be isolated 
(Disiss62). Related to this is the work of Preparata and Chien63 who 
study citation patterns between documents so that mutually cited 
documents can be stored as closely together as possible. The early work 
of Ivie64 was similarly motivated in that he proposed to collect 
feedback information from users showing which pairs of documents 
were frequently found to be relevant to the same request. The 
frequency was then taken as proportional to the strength of association, 
and documents more closely associated were made more readily 
accessible than those less closely associated.

Finally, the reader may be interested in pursuing the use of cluster 
methods in pattern recognition since some of the ideas developed there 
are applicable to IR. Both Duda and Hart65 and Watanabe66 devote a 
chapter to clustering in the context of pattern recognition.
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