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Laboratory tests: automatic systems 
Robert N. Oddy 

9.1 Laboratory experiment in information retrieval 

A laboratory is a sheltered place where one constrains the enthusiastic 
abandon of the real world in order to attempt to lay the blame for one 
apparently capricious phenomenon upon another. The extraordinary diffi­
culties experienced in all areas of science when designing experiments testify 
to the complexity of the interactions between natural phenomena. Experi­
ments are concerned with relationships between events or states as reflected 
by the measurements that we choose, and are able, to make. It is invariably 
necessary to control, or at least to keep tabs on, factors which are not the 
immediate concern of the experiment, but are suspected to have some 
influence on those that are. These comments apply whether an experiment is 
conducted in laboratory conditions or not. What, then, are the characteristics 
of a laboratory experiment which distinguish it from a real life experiment? 
I do not think that there is a clear distinction. However, one might point to 
a tendency for the experimenter to initiate events at his convenience in the 
laboratory, whereas he will observe natural occurrences in real life. In a 
laboratory experiment it will often be possible to control subsidiary variables: 
in a real life experiment one is more often faced with the problem of 
eliminating them in the analysis. It is easy to find exceptions to these 
tendencies. In experiments on aspects of human behaviour, for example, it 
is not always possible to control variables as the researcher would wish, even 
within the laboratory. Human cognitive activity is a substantial component 
of information retrieval, and in another chapter of this volume, Keen has 
discussed the problems of laboratory experimentation on that aspect of the 
field. In contrast, this chapter will consider laboratory work on the mechanical 
components of information retrieval. The events that the experimenter 
observes, in this case, are all executed by a machine whose characteristics 
can, to a large extent, be determined by the experimenter himself. Thus, in 
principle, he can exercise a considerable degree of control over variables. 
Indeed, it is hard to think of a 'purer' laboratory environment in science. The 
most substantial examples of the type of work to which I refer are the long 
series of tests with the Smart system (see Chapter 15) and those conducted 
over a period of several years at Cambridge University by Karen Sparck 
Jones, C. J. van Rijsbergen and others. 
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Information retrieval is the instrumentalist wing of information science. 
Most laboratory work has been explicitly directed toward the establishment 
of system design principles. Where information retrieval tests have been 
effected automatically, the theories under test have almost always been 
prescriptive. This should not be taken for a truism: if a theory is tested by 
means of a computer program, or other machine, it does not follow that it is 
simply prescriptive. It is not in practice always true, and certainly not 
necessarily true that a program, constructed as laboratory apparatus, is in 
some sense a prototype for a real life system. It is quite possible for a program 
to act, primarily, as a formalism, or detailed interpretation of, say, a 
descriptive theory. In fact, in the artificial intelligence field, this is frequently 
the intention of the programmer1. However, within the mainstream of 
research on automated information retrieval, it happens to be the case that 
theories have been predominantly prescriptive, and laboratory systems have 
been put up as potential prototypes. Perhaps it would be realistic to view 
these computer test environments rather as engineering workshops than as 
laboratories. 

Topics that have been investigated in computer laboratories include 
classification of index terms2, document clustering3-5, automatic indexing 
and term weighting6 '7, relevance feedback8-10, vector space models8 '11 and 
probabilistic theories12' 13. The usual way of testing the ideas has been to 
evaluate the ability of retrieval programs based upon them to separate 
relevant from non-relevant documents. Many aspects of the experimental 
methodologies used in this type of work derive from those developed by 
Cleverdon, particularly in the second Cranfield project14. 

The research methodology which has dominated laboratory work on 
automated information retrieval can be summarized by Figure 9.1. (There 
are several obvious feedback loops which I have omitted from the picture.) 
Empirical knowledge (about indexing languages, for instance), combined 
with the researcher's own intuition, lead him to state some assumptions 
about the inputs to, and objectives of an information retrieval system. From 
these he will attempt to derive a system specification perhaps by means of a 
structure of mathematical deductions. Thus, he can build computer programs 
which create and organize collections of document descriptions, retrieve 
references in response to compatibly formulated queries, and monitor their 
own activities for evaluation purposes. The evaluation uses test data, that is 
documents and queries chosen by the experimenter and with known 
characteristics; and it is normally the performance of the system with respect 
to the objectives that is evaluated, and not the plausibility of the assumptions 
or theory directly. Over the years the amount of rigour and effort allotted to 
the various components of the methodology have fluctuated. For example, as 
experience has been gained with certain classes of retrieval test system, 
programs have been assembled into flexible packages, so that new 
mechanisms can more easily be built from the components of old. Thus, the 
effort required in implementing programs has declined. At the same time, 
there is a new wave of mathematics in information retrieval research15 '16. 
The assumptions are stated more rigorously than before, and the theoretical 
development prior to system construction has become a focus of 
attention5' 13' 17' 18. 

Another discernible variation in methodology, with time, is that the 
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treatment of concepts relevant to information retrieval shifts from one region 
of the diagram to another. Ideas that previously made their first well-specified 
appearance in the programs now have a place in the mathematical structure 
of the prescriptive theory from which the programs are derived. An example 
of this process is evident in Croft's work5. Croft proposes a theoretical 
underpinning of known3 techniques for searching clusters of document 
descriptions. Such matters as matching functions and cluster representatives 
are dealt with in the theory rather than being specified in an ad hoc manner 
in the program. (There are, of course, analogous phenomena in the 
development of other prescriptive theories: men and women flew with a 
certain degree of success at a time when they had dangerously little knowledge 
of aerodynamics.) Theories of information retrieval based on cognitive 
considerations are in their infancy at the moment, and we find that a number 
of relatively imprecise assumptions are made; the theory consists largely of 
non-mathematical arguments leading to a prescription of a general nature 
only; and a program design (if such exists) in which, consequently, ad hoc 
decisions abound. An example of work at this early stage of development is 
the attempt of Belkin and Oddy19 to design an information retrieval system 
based on a notion of anomalies in the state of knowledge of an enquirer. 
Perhaps some of the formal structures which evolve in the programming will 
ultimately find their way into a more formal theory. 

It is not my intention in this chapter to survey computer-based laboratory 
testing of information retrieval techniques. My concern is rather with the 
role of this type of laboratory work in information retrieval research, present 
and future, and with its limitations and difficulties. The potential benefits of 
the methodology can be summarized as follows: 

(1) Control The whole test is performed by a machine and is thus, in 
principle, entirely manageable. The computer is a perfect laboratory 
assistant. All experiments are exactly repeatable, and observation 
(monitoring) is carried out with accuracy and consistency. Components 
of the system can be isolated and modified or replaced, without affecting 
the rest of the system. The components can therefore be individually 
evaluated. 

(2) Speed. Needless to say, the execution of searches can be very rapid on a 
computer, and evaluation measurements can easily be collected and 
processed, automatically and immediately. In addition, amendments or 
corrections to a search strategy can often be made by editing small 
sections of the program, within a matter of a few days. 

(3) Power of expression. Programming gives us an additional formal mode of 
expression for models and theories, and therefore has a useful part to play 
in theory development. 

(4) Prototype development. One can rarely copy program code from a 
laboratory environment directly into a real life system. However, the 
laboratory program can be a useful aid to operational system specification. 

Some of the limitations of the methodology, and the difficulties associated 
with it, are: 

(1) Restricted view. Human factors in operational information retrieval 
systems are usually not taken into account in tests of the type which 
we are presently considering. Some factors, such as command language 
and displav contents and format, could conceivably overshadow the 
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theoretical considerations which motivated the system design. (I am 
thinking, particularly, of relevance feedback techniques8' 9.) 

(2) Conceptual simplification. Very often, extremely complex phenomena, to 
which the behaviour of real life systems is closely linked, enter the 
laboratory test as simple abstractions: for example, an information need 
may become a list of index terms, and a relevance judgement a truth-
value. The significance that we place upon test results will depend upon 
the appropriateness of these abstractions. This problem is not specific to 
automated laboratory testing, but I wish to mention it here because it is 
more easily brushed aside when users are not present, reminding one of 
the simplifications that have been made. 

(3) Extrapolation problems. It is usually necessary to work with small samples 
of document collections and queries in the laboratory, so that it is feasible 
to assemble complete relevance judgements, and so that the demands on 
computer resources are not excessive. The statistical problem of 
extrapolating from laboratory results to real life systems is severe. This 
chapter is not directly concerned with the problem (see Chapter 2); but 
it should be borne in mind in the present context. 

(4) Technical faults. It is remarkably difficult to ensure the correctness of a 
computer program of any substantial size, and often it is not at all 
obvious from its behaviour that a program is faulty. In principle, 
therefore, we have the problem of demonstrating the credibility of test 
results. 

(5) Communication difficulties. A detailed account of the workings of a 
program makes for very heavy reading, and is often unnecessary in 
research papers: a summary, or description by analogy is usually more 
illuminating. There is, however, a danger of ambiguity if programs so 
described contain unobvious interpretations of the theory, or ad hoc 
procedural 'theories'. 

Before I attempt an assessment of the methodology, I shall give a fairly 
detailed description of the nature of data and programs used in the 
mainstream of automatic laboratory information retrieval testing. 

9.2 The test collection 

The data used for information retrieval laboratory testing has been the 
subject of some discussion recently20-22. Retrieval experiments make use of 
what are commonly referred to as 'test collections'. Such data consists of a 
static collection of document descriptions, queries and relevance judgements. 
The numbers of documents and queries are usually small so that the labour 
required for setting up the test collection (particularly for obtaining complete 
relevance judgements) is kept within reasonable bounds. This has had serious 
consequences for the acceptability of the results obtained in laboratory 
situations, and it is consideration of this problem that has lead Sparck Jones 
and van Rijsbergen23 to propose that a large 'ideal' test collection be designed 
for use by a wide range of experimenters. I shall return to this idea presently, 
but should like first to deal with the small test collections traditionally used 
in tests of automatic information retrieval systems. 

The raw data for a test collection can take a number of forms. The whole 
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text of the documents may be available in machine-readable form. More 
frequently, it will be the abstracts that are available, or perhaps, only the 
titles. Index terms may have been assigned to the documents manually, using 
one or more indexing languages. Queries are often expressed as short natural 
language questions or statements, and may be accompanied by terms chosen 
manually from an indexing language. The constitution of the raw data will, 
of course, result from compromises between the experimenter's objectives 
and data available. Each query must have associated with it a list of 
documents judged relevant: the judgements are usually recorded as points on 
a simple ordinal scale of relevance. Before retrieval tests are conducted, the 
collection is typically transformed into a convenient numerical form. 

Some test collections are used by a number of researchers working in 
different institutions. The collection constructed by Cleverdon in the mid-
1960s at Cranfield14 is one that has seen, perhaps, the heaviest use in 
computer-based tests, although it was built for a manually executed 
experiment. An experimenter who chooses to make use of an existing test 
collection may use the raw data, if he wishes to try a new text processing 
technique, or he may be able to take advantage of existing indexing as 
embodied in the numerically coded data. 

All but a small minority of experiments have assumed a very simple 
structure for document descriptions and queries; the same structure serves 
for both. A document (or query) is represented by a set of weighted terms, for 
example: 

cluster (6), file (4), method (4), document (3), single-link (3), hierarchy (3), 
algorithm (2), compare (2), time (2), heuristic (1), theory (1), . . . 

The weights are derived from the text and usually indicate the importance, 
in some sense, of the term to the subject matter of the document (query). The 
terms can be numbered serially (in an arbitrary order), and if the collection 
is static, as it invariably is in laboratory tests, the representative can be 
described as a vector whose elements are term weights. This is the symbolism 
employed in most of the literature on the SMART experiments8. In many 
tests, a special instance of this representational structure is used, namely a set 
of wwweighted terms: if the weights are all the same, they can be dropped 
from the descriptions. The more complex structures which have appeared in 
experimental work, such as term classes2 and document clusters3' 8 '2 4 , are 
derived from simple representatives like these. 

In a laboratory situation, it is very unusual for the automatic system to 
operate in the presence of human enquirers. Consequently, it is not necessary 
to provide facilities for interpreting and displaying textual data in the search 
programs. Retrieval and information structuring programs can be simplified 
considerably if they do not have to handle text. Therefore, documents, 
queries and terms are given numerical names (serial numbers). To the 
programs, a document description is a document number followed by a list of 
term numbers, each of which may, in some collections, be accompanied by 
a numerical weight. A query has the same structure. The relevance 
judgements pertaining to a query are typically denoted by a query number 
followed by a list of the serial numbers of documents deemed relevant. From 
files of records of this sort, other files can be derived by relatively 
straightforward programs, for the later convenience of retrieval programs. 
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For instance, the inversion of the document descriptions file contains one 
record for each term: the term number followed by a list of document 
numbers. An extremely clear account of the organization of test collection 
data for experimental information retrieval is to be found in Sparck Jones 
and Bates' report6 (p. Dl ff) on their work at Cambridge University. They 
point out the formal similarity between files of different purport. For 
instance, a file in what they call 'a b' form consists of a sequence of numbers, 
a, each element of which is followed by a list of numbers, b, terminated by a 
character '/'• A set of document descriptions can be encoded in the 'a b' form 
(see Figure 9.2), as can a set of queries, and a set of relevance judgements. A 
single program can be used to invert any of these files, because they are in a 
standard format, and the same is true of any other process that is required. 
Having generated the primary files (document descriptions, queries, 
relevance judgements) from raw data, Sparck Jones and Bates went on to 
create a standard set of auxiliary files, such as inversions and frequency data, 
as a matter of course, for all their test collections. 

190 583 / 

291 407 

/ 

Figure 9.2. Document descriptions in 'a b' form 

If an experimenter wishes to work from raw data, he must equip himself 
with programs to derive the numerical representation of the test collection. 
Typically, the textual material is first processed to form a dictionary of terms, 
or 'stems', with associated term numbers. Then, the texts are scanned again, 
their component words matched against the terms in the dictionary, and 
replaced by the corresponding term numbers. The algorithms employed to 
construct the dictionary vary from one experimental system to another, 
usually in minor ways, and may include automatic suffix stripping and allow 
for the manual inclusion of synonyms. Accounts of the principles underlying 
these methods can be found in van Rijsbergen12 and Salton25. Note that at 
the moment I am concerned with the primitive data comprising a test 
collection: the more sophisticated indexing structures which have been the 
subject of most recent automatic information retrieval experimentation are 
derivations or transformations of them. There are a few exceptions. For 
example, some retrieval methods require a syntactic analysis of the document 
and query texts26'27. There has been very little evidence of this type of work 
in information retrieval laboratories for several years now, following 
generally disappointing results28'29. Other approaches make use of the 
positions of words in the text, so a concordance must be generated from the 

Document 
number 

Term 
number 

57 86 101 110 

.17 19 157 193 282 

466 583 666 702 / 

78 86 96 163 740 
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raw data of the test collection. Full text retrieval systems, such as STATUS30 

and STAIRS31 fall into this category, although they do not appear to have 
been tested in laboratory conditions. Very recently, this sort of data has been 
used by Belkin and Oddy19 (who are investigating the computer modelling of 
anomalous states of knowledge) to generate associative structures from 
individual texts. Simple files of term postings, weighted or unweighted, are 
not adequate for this purpose. 

For the most part, information retrieval test collections are small: typical 
numbers of documents are 200, 424, 800, 1400, 11 518; and queries number 
42, 24, 63, 221, 193. Robertson has discussed the difficulties of extrapolating 
results obtained on such small samples in the present volume, and 
elsewhere22. At this point, I shall merely mention some reasons for this state 
of affairs. First, data collection often involves a great deal of drudgery and 
cost for the researcher or his assistants. Suitable documents and queries have 
to be selected, perhaps indexed manually, and prepared in a convenient 
machine-readable form. Relevance judgements must be made, either by the 
originator of the query, or by a subject expert. For exhaustive data, the 
number of decisions required is the product of the number of documents and 
the number of queries. The largest collection, that I am aware of, for which 
exhaustive relevance judgements have been made, is the Cranfield 2 test 
collection assembled by Cleverdon, Mills and Keen14. There are 1400 
documents and 221 queries; thus 309 400 relevance decisions were made. An 
experimenter will naturally prefer exhaustive data to simplify the evaluation 
methodology, and particularly if he is concerned with a relevance feedback 
mechanism. Other reasons for the use of small test collections are related to 
the computing aspects. Many processes to which the data are subjected— 
classification procedures, matching and ranking, for example—consume 
quantities of computer time which depend on collection size factors (numbers 
of documents, terms and queries) in a worse than linear fashion12. The 
experimenter is therefore obliged to pay some attention to computational 
efficiency. The most productive experimenters have made use of large, fast 
computers. With such equipment it is possible to hold in core storage 
substantial parts (or extensive derived structures) of a test collection of 
several hundred documents. A program will run very much faster in this 
circumstance than if it must make frequent reference to several disk files, and 
so the experimenter will obtain a speedy job turnaround from what is often 
an over-subscribed university computer service. Paradoxically, an experi­
menter with a small computer will tend to write programs which can cope 
with larger files, because for him, even a small test collection is a large data 
structure. (But his experimental progress will, of course, be slower.) 

9.3 Laboratory programs 

The programs used in experimental work differ in a number of ways from 
those which would be used in an operational environment to achieve the 
equivalent processes. Reasons for this are that no interface is required for a 
human searcher, the goals of experimental programs are not the same as 
operational ones, and the test collection is assumed to be relatively small and 
static, with known bounds for all its dimensions. It is common for an 
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experimenter to disregard the problems of implementing his algorithms as 
components of a full-scale operational system, and concentrate his program­
ming effort on achieving efficiency in his test programs, and thus a quick 
turnaround for each stage of the experiment. One often encounters the view 
(or faith) that, if the merits of the logic of the retrieval technique warrant use 
in a large-scale, real life system, ways will certainly be found to create an 
acceptable implementation, either through ingenious programming or by 
devising new hardware. This seems not unreasonable when one considers the 
history of computing. 

I should like to illustrate the nature of information retrieval laboratory 
programs with a simple example. Although this should not be regarded as a 
description of an actual program, it does draw upon ideas present in existing 
programs. Suppose that we wish to model a system that responds to a user's 
query with a ranked list of references to documents. The document ranking 
is to be determined by the sum of the weights of terms which are common to 
both query and document. For my present purpose, it is not important to 
specify how the weights have been derived; suffice it to say that they are 
available either in the document descriptions or the queries. One evaluation 
method, used by Sparck Jones2 involves aggregating, for all queries in the 
test, the numbers of relevant and non-relevant documents retrieved at each 
value of the matching function. (This leads to a type of microevaluation, in 
Rocchio's terminology32.) 

An operational system would require the capability of selecting enough of 
the highest ranking documents to satisfy the demands of the user, and of 
presenting them in the correct order: a process which must be designed with 
some subtlety if it is not to use excessive computing resources. A laboratory 
model could do the task in a very different manner: ranking documents is 
unnecessary because there is no user to view them. A straightforward 
computer program can be designed along the following lines: 

(1) Set up a two-column table in core storage to be used for counting relevant 
and non-relevant documents (see Figure 9.3). 

(2) Place all the relevance judgements in core storage. 
(3) Place all the (numerically coded) document descriptions in core storage. 
(4) Proceed through the file of queries, performing the following operations 

for each query: Compare each document with the query to compute a 
matching value (which should be a positive whole number); this and the 
relevance relationship between the document and the query determine a 
position in the table, to which 1 is added. 

(5) When the last query has been processed, the completed table can be used 
to calculate figures for a recall/precision plot. Note that this, and not 
retrieved references, is the primary output of the program. 

On most computers, the number of documents that can be handled in this 
way is rather limited, because all their descriptions are held in core storage 
while queries are processed. However, test collections usually have far fewer 
queries than documents: one does not often encounter experiments in the 
literature which use more than 250 queries. Thus, a more useful experimental 
computer program, which could deal with indefinitely large sets of documents, 
can be built by simply substituting 'query' for 'document', and vice versa, in 
steps (3), (4) and (5) above. We now have a program which looks structurally 
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Relevant Non-relevant 

Matching 1 
value 

2 

3 

t 

m 

Figure 9.3. Table for counting relevant and non-
relevant documents at each matching value 

very different from modern online systems; although it resembles the early 
magnetic tape-based retrieval systems which processed queries in batches. 

If the researcher is concerned with aspects of the interaction between the 
user and the computer, then the additional complexity of the retrieval process 
will usually oblige him to adhere more closely to the structure of real life 
systems. An experiment to evaluate the effect of relevance feedback8"10, for 
instance, would require the program to select a retrieved set of documents, so 
that their indexing can be used together with relevance decisions to compute 
a modified query. No doubt, more subtle and efficient ways could be devised, 
but this may be self-defeating, in that one's confidence in the correctness of 
the programs may be endangered. 

Programs which model some aspect of the user's cognitive behaviour may 
have no formal specification: the details of the model are worked out in the 
process of writing, and trying the program. These programs will almost 
certainly be prototypes (see, for instance, Oddy33), inasmuch as they proceed 
as a real life system would, simply because you cannot design algorithms 
which efficiently capture the essence of a technique for test purposes until 
you know precisely what that technique is. 

Those who have been engaged in laboratory work in information retrieval 
over several years now have extensive suites of programs which can be 
applied in a wide variety of combinations to test collections. The well-known 
Smart system is described in Salton8. Programs are included for deriving the 
numerically coded form of a collection from natural language text, for 
clustering documents, for selection of clusters appropriate to a query (the 
whole collection may be selected), for searching the selected clusters, and for 
evaluation. All of these programs have a number of optional facilities. The 
program suites used at Cambridge University are described and discussed by 
Sparck Jones2 and Sparck Jones and Bates6. 

A major advantage of an automatic information retrieval laboratory, 
equipped with a flexible program suite and a number of conveniently 
formatted test collections, is that it is possible to try to accumulate convincing 

a 
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evidence for general hypotheses by conducting series of experiments. A 
comparative test which indicates, on the basis of one test collection, that one 
setting, A, of certain factors gives better performance than another setting, 
B, can be repeated on a number of other collections. In fact, both Sparck 
Jones and Bates6 and Salton8 have reported that a number of results hold for 
several of their test collections. A comparison6 of the results of similar 
experiments by different groups of researchers, however, shows that there is 
often broad agreement, but that the situation is confused by variations in the 
evaluation techniques: the various performance averaging methods give 
materially different figures34. 

9.4 Experimental objectives 

What questions are tests of the type I am discussing designed to answer? 
What are the strengths and limitations of the methodology? Criticisms of the 
methodology, usually pointing out lack of realism, are so common as to be a 
part of the information retrieval folklore. Experimenters often acknowledge 
the problem by qualifying their results appropriately. So, how successful has 
the methodology turned out to be? 

In his review of theoretical work in information retrieval, Robertson15 

discusses the role of experimental work, and distinguishes between 
experiments which test the assumptions on which a theory is based, and 
those which test theories by evaluating the retrieval effectiveness of systems 
based upon them. There have been very few experiments fulfilling the former 
role—I shall have more to say about this presently. Laboratory experiments 
are usually intended to determine the effect of some input parameter or 
system design feature on retrieval effectiveness, that is, on the system's 
ability to retrieve relevant documents. If the researcher views his tests as a 
series of engineering trials, this is the obvious approach: he is simply 
determining whether he has achieved his objective. It is not so obvious that 
it is the right approach if the researcher's objectives are scientific, in other 
words, if he wishes to test a theory. Recently, as Robertson15 points out, 
theories have arisen which explicitly relate retrieval effectiveness to system 
parameters. (For instance, one first shows that ranking documents according 
to probability of relevance gives optimal retrieval performance, in some 
sense35, and then proceeds to devise ways of estimating that probability12.) 
Even in such cases, an experimenter might be accused of impatience if he 
moves directly to a test of retrieval performance. There are assumptions to 
test: if the document collection, or the system's users do not conform to the 
assumptions, what can the experimental result tell us about the theory? In 
general, nothing! If the result of the test is good, he may have an engineering 
success, but it is not a scientific one, because he still does not know why the 
system works as well as it does. 

It is not within the scope of this chapter to survey the results of laboratory 
experiments in information retrieval over the past years (see those of Sparck 
Jones and Salton). 1 shall therefore confine my account to what is relevant to 
methodological issues. The effects of various factors on retrieval performance 
have been studied with the aid of test collections. The factors can be regarded 
as falling into two broad categories, although the boundary is indistinct. 
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First, there are collection parameters: of what does the raw data consist, and 
how is it initially processed to form the document descriptions, queries, and 
relevance judgements? Indexing can be manual or automatic, and based on 
titles or abstracts; exhaustivity and specificity can vary; thesauri and 
stemming procedures can be used to normalize vocabulary; weights can be 
assigned to index terms; various degrees of relevance may be taken into 
account. Second, there are variations in retrieval system features. Queries 
and document descriptions can be matched in a number of ways; relevance 
judgements relating to retrieved documents can be used in a variety of ways 
to improve queries; complex structures derived from the simple collection, 
such as term classes and document clusters, can be exploited in retrieval. All 
of these factors can, in principle, be controlled by the experimenter, and 
another way to categorize them is according to the practical difficulties of 
controlling them. In an automatic laboratory information retrieval system, 
any single parameter or feature, or any combination of parameters and 
features, may be varied independently of all other features, whether it makes 
sense to do so, or not! Factors which can be changed by small to moderate 
amounts of computer programming, of course, are the ones presenting least 
difficulty. These include retrieval system features and some of the indexing 
parameters. Not only is it practically straightforward to vary these factors, 
but it can also be done very precisely; in fact, it must be so done because the 
'values' are coded into programs. Difficulties arise when controlled variability 
is desired in the characteristics of any data which is generated intellectually. 
Instances are the use of (conventional) thesaural relations in manual indexing, 
and the judges and scales used for relevance data. Precise control of these 
factors is not possible in the same way as for computational factors, because 
they are not so easily quantifiable or, in the case of procedural factors, 
specifiable. In addition, alternative forms of the test collection are required 
for different values of these variables, involving the experimenter in 
considerable effort and expense. Consequently, very little experimentation 
has been done with such variables. 

It is the hope of the experimenter, whether engineer or theoretician, that 
results obtained in the laboratory would also be obtained in real life, should 
an equivalent experiment be conducted. If that were so, he would be in a 
position to make very precise recommendations concerning the organization 
of information within the system and the retrieval algorithms which would 
optimize performance. Unfortunately, this extrapolation is highly proble­
matic. In the first place, the scale of most test collections is very different 
from that of operational databases. I shall not dwell on the very difficult 
statistical problem of extrapolation here, but refer the reader to Robertson's 
chapter (2) in the present volume, and to the illuminating discussion in his 
thesis22. It is true that some laboratory tests have used collections of the order 
of 10 000 documents5, 6 '36 , but these are deficient in relevance information, 
and therefore difficult to use for retrieval tests. 

9.5 Realism 

Other problems have to do with realism: there are aspects of real life 
information retrieval activities, mostly to do with user behaviour, which 
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cannot easily be mirrored in laboratory systems, but which may have 
considerable impact on perceived performance. I should like to point out 
that these problems fall into two categories, although the categories are 
subtly interrelated and I shall be forced to discuss them together: some relate 
to what may be called parameters (environmental factors, system design 
features, charging algorithms, for instance) and their effect upon the retrieval 
effectiveness obtainable, and others relate to the goals of the user and the 
system and how effectiveness should be measured. The debate on what 
comprises the effectiveness of an information retrieval system is long and 
involved. Notable contributions have been made by Cleverdon14'37, 
Lancaster38, Cooper39 and a number of others. Van Rijsbergen12 restricts 
the term 'effectiveness' to refer to 'the ability of the system to retrieve relevant 
documents while at the same time holding back non-relevant ones' (p. 145), 
and it is this type of effectiveness, and only this type, that is measured by very 
nearly all laboratory tests of automatic systems (one exception is a test by 
Oddy33 of a browsing mechanism in which measurements related to user 
effort were made). Relevance-based effectiveness measures are also used inter 
alia in real life experiments. Now, in order to establish a fruitful relationship 
between the laboratory tests and their hypothetical real life analogues, we 
must ask two questions: 

(1) Is relevance-based effectiveness safely separable from other performance 
characteristics for experimental purposes? 

(2) Is relevance in real life the same as relevance in laboratory tests? 

Aspects of performance which may be regarded as important by users 
include the effort that they must expend, the response speed of the system, 
and the cost-effectiveness14' 40' 41. If a system is poor in any of these respects 
then, clearly, its achievements in the recall/ precision domain may simply not 
be appreciated by the users. However, I think the connection between the 
different components of performance is deeper than that. System parameters 
such as the types and powers of storage devices, computer processors, and 
communication equipment, the complexity of algorithms, the ergonomics of 
terminal design, and the user interface facilities42 are all factors which 
strongly influence performance and which are not usually investigated in 
information retrieval tests. The assumption made is that the relevance of a 
document to a query does not depend on such aspects of performance. 
Relevance in tests is a simple abstract entity, a relation between queries and 
documents: any links between its real life correlate and characteristics like 
user effort and response time are disregarded. Of course, such links do exist 
and they are complex, and have yet to be investigated properly. They arise 
out of the cognitive activity of the user during the searching process. The user 
will normally be trying to fulfil some purpose, which will determine the use 
he makes of the system's output. His progress towards his objective, and thus 
his attitudes towards the search output will vary as the search itself proceeds 
(of which, more will be said presently). Therefore, we must expect every 
apparent aspect of system behaviour to have some influence on relevance-
based effectiveness measurements. I am aware of no experiment which 
attempts to quantify any of this class of effects, although the effects are 
widely acknowledged43, so I am unable to answer question (1), above. 

I have said that in laboratory tests, simple abstractions of the phenomenon 
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of relevance are adopted for evaluation. Recently, theories for information 
retrieval have emerged out of the background of experimental work and they 
are founded upon the same abstractions. Robertson and Belkin44 have made 
a distinction between two principles for ranking documents in response to a 
query: one can rank according to probability of relevance or degree of 
relevance. Probabilistic theories assume that relevance is a boolean variable, 
that is it can take on one of two values, denoted: relevant and non-relevant. 
Systems based upon the use of matching functions or similarity measures, 
e.g. co-ordination level and cosine correlation, would appear to be estimating 
the degree of relevance, although evaluation is usually done with dichotomous 
relevance judgements. Other assumptions typically made about relevance 
are that, for any document-query pair, the relevance judgement is 
independent of time, and of the other relevance judgements. 

The idea of relevance in the context of real information needs is complex 
and poorly understood—information retrieval research can be viewed as our 
attempt to understand it—and has been the subject of a substantial literature, 
to which I refer the reader through Saracevic's excellent review article45. A 
document retrieval system user generally makes a series of decisions about 
documents. First, he may make a note (perhaps mental) of the existence of 
the document; then he may decide to look at the document's contents; 
finally, he may decide to make use of those contents in his own work. All of 
these decisions can be regarded as relevance judgements, and the outcome of 
each obviously depends upon the enquirer's perception of the document, the 
purposes of the enquirer, and his existing knowledge. By his perception of 
the document, I mean what aspects of its description or content the enquirer 
sees (title, abstract, index terms, for example), and in what circumstances he 
sees them (online or in a batch printout). The 'cognitive view' of perception46 

is that perceived objects are interpreted through the knowledge, or world 
model, of the perceiver. Online systems are often provided with so-called 
browsing facilities, presumably to encourage the interleaving of mechanical 
and intellectual effort (recommended by Doyle47, for instance). Unfortu­
nately, the high cost of using today's online services discourages many users 
from taking the time to contribute significant intellectual effort during the 
search. (Let us hope that this is a temporary situation.) Nevertheless, even 
under these circumstances, a user's state of knowledge relating to his purpose 
changes during a search. The purpose itself may also undergo change if 
Belkin's48 analysis of the information retrieval situation is to be accepted. A 
user comes to an information retrieval system because his state of knowledge 
is, in some way, anomalous; that is, he has recognized that his mental world 
model cannot cope with his problem in hand. It must be assumed that he may 
not be able to specify what information is needed to resolve the anomaly. So, 
his conceptualization of his purpose in searching the literature is subject to 
modification as his knowledge, and thus the anomaly in his knowledge, 
changes. The consequence of all this is that relevance is dependent upon 
three factors related to the user—perception, purpose and knowledge— 
which are causally closely related to each other, and subject to variation in 
the course of an interactive search. The picture of relevance decisions that we 
are obtaining is very different in nature from the relevance judgements 
included in test collections. Thus my answer to question (2) is clearly 'No'. 

What implication does this argument have for the results of laboratory 
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tests? It is that, in principle, they are inconclusive. An example should 
illustrate the point. 

Experiments on relevance feedback8-10, which exhibit relatively outstand­
ing effectiveness, make use of the same set of relevance judgements for two 
separate purposes. First, they are used to simulate the user's feedback, that 
is his reactions to documents retrieved, and thus they determine the query 
modification. Second, they are used to evaluate the effectiveness of the 
technique. In real life, two distinct sets of relevance judgements would be 
used for a corresponding experiment. As he sits at the terminal, the enquirer 
would make instant judgements, according to his perception of the documents 
during the search session. His evaluation of the search would be made at a 
later time, on reflection. Theories are unrealistic in this respect, and 
experimental arrangements fulfil their unrealistic assumptions, and are thus 
inconclusive in relation to real life systems. 

What laboratories tests do is to isolate small portions of large, complex 
systems for independent study. This is a procedure which, when applied to 
systems with human components, has been strongly criticized49 '50. General 
systems theorists point out that the interactions between the components of 
a system are profound and cannot be ignored or artificially controlled if the 
system's behaviour is to be understood—'the whole is greater than the sum 
of its parts', they are wont to say. Simon51 describes artifacts (information 
retrieval programs, for instance) as relatively simple organisms whose 
behaviour is nevertheless complex because they react to a complex 
environment. Knowing how they react to a simple or controlled environment 
does not necessarily help us very much. Modern mathematical theories of 
information retrieval have arisen out of extensive experimental experience 
mainly with laboratory programs. (That is perfectly reasonable, and 
represents a worthy benefit of the earlier laboratory tests.) Unfortunately, 
tests of the assumptions and predictions of the theories have been mostly 
confined to the same laboratory environment. Partridge's52 comment on 
difficult software engineering tasks applies to information retrieval: 'A more 
or less "wicked" problem is often the initial "given" and, although it is top 
priority to transform this problem into a formal analogue before proceeding 
further, the subsequent implementation swims or sinks in the light of real 
world application: that is, back in the domain of "wicked" problems' (p. 
244). My view is that in this field, the type of laboratories I have described 
are not the best places in which to put theories to the test—unless we are only 
interested in theories of test collections! They do, however, have a valuable 
role as information retrieval engineers' and theoreticians' workshops, where 
ideas can develop and tentative or exploratory tests can be made. Coupled 
with this, I would advocate the development of methodologies which 
facilitate real life testing of the assumptions and consequences of promising 
theories53.1 feel uneasy about solutions to the realism problem which involve 
larger and better planned test collections23 and repetition of tests on a 
number of different test collections6'8. 

9.6 Model building 
The automatic information retrieval laboratory environment is used for 
another type of computer-based activity—that of model building. Because 
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this is a less common activity, the terms 'theory' and 'model' are used almost 
interchangeably in the information retrieval field. A proper discussion of the 
differences between the usages of these words in science would be extensive 
and out of place here5 4 '5 5 .1 should like to use the term 'model' to refer to a 
particular type of theory: one that attempts explanation of a phenomenon by 
describing & process and exploring its effects. This gives us an approach to the 
problem of relating the outputs to the inputs of our systems which is distinct 
from mathematical argument. Recently, mathematical theories have been 
used to suggest retrieval algorithms16: I would not call such an algorithm a 
'model' while it is still entirely derivative. One might ask why we should wish 
to build models without a sound mathematical theory. In information 
retrieval, we are trying to reproduce automatically a cognitive act: the 
decision as to whether a document, or 'item' of information, is relevant. It is 
notoriously difficult to formulate mathematical theories which account for, 
and enable us to handle the variability in human behaviour56 '57. According 
to Farrell50, many psychologists believe that outputs cannot be related to 
inputs in any simple (mathematical) way, and that internal states must be 
taken into account. This is best done by modelling. 

If we are looking for retrieval systems which are more responsive and 
adaptable to the individual user we could do worse than model the behaviour 
of good human information providers—subject experts, librarians and 
information scientists. Following a 'systems' approach, one can formulate a 
high-level structural model of their behaviour, illustrated by a block diagram 
showing the relationships between components, for instance, and experi­
mentally determine whether the human behaviour fits the model (see, for 
example, Olney58, Ingwersen and Kaae59, Bivins60 and, for methodology, 
the chapter by Keen (8)). Alternatively, one can attempt to build a computer 
program with the hypothetical structure, run it, and observe its behaviour. In 
the latter approach, the modeller must elaborate the meaning of all his high-
level components in a very precise way. 

Before making more general points, I should like to illustrate the process, 
briefly, from my own experience, by explaining how certain essential parts of 
a particular program, called Thomas61' 62, were written. The program is an 
interactive system which provides a browsing facility for the user. He is not 
required to formulate a query, and as the dialogue progresses, his reactions 
to the indexed references are used by the program to build a picture of his 
area of concern. At the highest level, a 'cognitive' model of dialogue, 
essentially like Hollnagel's63, is assumed. Each participant has his own image 
of the world, which includes an image of the other's world-image: let me call 
this included image a 'meta-image'. Communication becomes more effective 
as these meta-images more accurately portray the current concerns of the 
participants. To implement this model in a man-machine dialogue, the 
computer program must have a fund of knowledge about the world, and a 
means of representing its image of the man. It must be able to improve that 
meta-image as the dialogue progresses, that is, in response to the man's 
utterances, and in displaying information to him it must aim not only to give 
him relevant references, but also to help him form his image of the program's 
world-image. (We are beginning to see some guidelines for a program design.) 
Thomas' world-image is a graph in which the nodes represent documents, 
subject terms and authors, and the arcs associations between them, derived 
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from conventional indexed documents and a thesaurus. The form that its 
image of the man takes is a subgraph (from its own 'knowledge') together 
with a few notes about his reactions to information displayed during the 
dialogue. Now, we turn to the program. The processes in the program were 
refined in a hierarchical fashion as the meanings of the program's goals were 
gradually elaborated. The description of one cycle in the dialogue (i.e. at a 
very high-level in the model) is as follows: 

(1) read a message from the man; 
(2) use it to influence the state of Thomas' meta-

image; 
(3) use the meta-image to respond to the man 

(For readers who are programmers, I should say that each of the three steps 
is coded as a procedure call.) I shall not elaborate the first step here, except 
to say that it includes an interpretation of the text of the man's message 
which makes reference to Thomas' images. Thus the communication can be 
regarded as having a cognitive basis46. Let us proceed just one more level 
down in the (informal) program definition with the description of step 2: 

(1) update Thomas' self-assessment according to the 
man's reaction to the last display; 

(2) 'prune' Thomas' meta-image in the region of nodes 
which the man does not appear to like; 

(3) 'enrich' the meta-image in the region of nodes in 
which the man shows interest; 

(4) incorporate new material in the meta-image if the 
man has explicitly mentioned new words; 

(5) make sure the meta-image is not fragmented 

I am not attempting to make this specific program fully comprehensible to 
the reader (the details can be found elsewhere33), but to give him or her a feel 
for the way a model may be elaborated through programming. For this 
purpose, I hope that I have now carried the illustration far enough. 

The process of elaboration of the model is by no means automatic, and the 
result is not unique. Some decisions must be made by the programmer in an 
ad hoc way: he uses intuition, introspection and, when he can, the dictates of 
theories which, he feels, are applicable. This is a well-known method in 
Artificial Intelligence work, and has been defended ably by Lindsay56 and 
Schank64. A computer model rarely achieves its final form at the first attempt. 
Indeed, if it does, one can conclude that it has been abandoned, due to failure 
or lack of interest. The modeller will try to correct defects in its performance 
by making what he hopes are appropriate modifications to the program, and 
hence the model. This is a type of theory which can be very readily changed, 
and re-tested65' 66. The advantage of this facility becomes clear when we 
consider that, even in the case of a fairly simple procedural model, as 
incorporated into Thomas, it is extremely difficult to account for its behaviour 
(i.e. relate output to input) mathematically. The computer modelling 
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methodology is also a ruthless critic of ill-conceived or vacuous theories, of 
which I suspect Information Science could boast a number. 

I should draw attention at this point to the fact that there are some 
information scientists who do not view computer modelling as a helpful 
means to understanding, and regard it as somewhat unhealthy. Rosenberg67 

writes: 'If, as I believe, the nature of human information processing is 
fundamentally different from machine information processing, then the 
development of digital computer systems becomes an obstacle to the 
understanding of information and its use' (p. 266). 

As with the more conventional automatic information retrieval laboratory 
testing, computer modelling has its difficulties. First, programs can become 
very complex, to the point when they are incomprehensible, as patches are 
made to take care of unwanted behaviour. Simplification is then necessary if 
the model is to have any scientific value, and this may be dependent upon 
having a new insight. Second, evaluation of the effectiveness of the retrieval 
program is, as usual in information retrieval, fraught with difficulty. If we 
substitute a complex notion of relevance for a simple one in the theory, then 
we may even deprive ourselves of the easy way out—evaluating the system on 
its own terms. Finally, computer models can be criticized in the same way as 
other laboratory systems, for unrealistic isolation of portions of the system 
for study50. 

What role can computer modelling in the laboratory play in the 
development of information retrieval, and what is its relationship to 
laboratory systems derived from mathematical theories? Clearly, modelling 
offers us a mode of expression which is distinct from mathematics, and is 
capable of coping with situations which do not appear to lend themselves to 
mathematical treatment. Should we regard a model as a stop-gap: a means 
of getting our ideas in order so that a mathematical theory can be evolved? 
Or should we accept the belief expressed by Sloman68 that viewing complex 
phenomena as computational processes 'should supersede older paradigms, 
such as the paradigm which represents processes in terms of equations or 
correlations between numerical variables' (p. 3)? I do not think we have 
enough experience of computer models to know the answer. In the meantime, 
the two can fruitfully coexist. The mathematical theories that exist at present 
refer to limited regions in the information retrieval domain. Pehaps models 
can be developed to provide the appropriate contexts for the application of 
the theories. 

9.7 Program correctness 

It is well known that a fault-free program is a rare thing. Some faults cause 
the program to break down or behave in an obviously erroneous way; others 
lurk in the program unnoticed for a considerable length of time. These latter 
faults are responsible for deviations from correct behaviour which are 
sufficiently small that the results still appear reasonable to the experimenter. 
How 'small' that is depends upon the expectations of the experimenter. I 
shall not dwell on the obvious type of fault, but make a few comments about 
the more subtle ones. It is clear that an experimenter must make every effort 
to ensure that the results obtained from his computer programs can be relied 
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upon. In recent years a considerable amount of research has been done on the 
problems of reliability in computer systems in general. A very useful 
collection of papers is to be found in Anderson and Randell69. Among the 
techniques for improving program reliability, those for fault avoidance, as 
opposed to tolerance, and those not requiring a special programming system 
are of most interest to the experimental information retrieval programmer. 
Disciplined use of a good programming methodology and a language which 
allows for a reasonably natural expression of the process and data structures 
are the most significant techniques. 

Correctness of a program is judged with respect to a specification of the 
required function and behaviour of the program. The judgement can be 
made in two ways: 

(1) The program can be tested: Gerhart70 discusses the principles of testing. 
A program must always be tested. The testing of an information retrieval 
laboratory program is quite conventional, although constructing test data 
can be tedious. However, testing can never be exhaustive. One may try 
to test program modules exhaustively, but modules have a habit of 
interacting with each other in unexpected ways when they are run 
together, so ultimately one is faced with the prospect of checking every 
conceivable output of the complete program! One compensates for the 
inevitably partial testing by constantly keeping an eye on the reasonable­
ness of all output produced by the program, and by combining testing 
with the second method of judging correctness: reasoning about the 
program. 

(2) The program may be proved to be consistent with the specification. This 
is extremely difficult and the proofs tend to be unwieldy, but very informal 
proofs can often be done for parts of the program, if it is well structured, 
which are convincing enough for most purposes. 

With information retrieval programs, we must be clear what we mean by 
the specification. I am concerned at the moment with the technical problem 
of obtaining a correct program, and not the research problem of obtaining an 
ideal program design. Thus correctness is to be judged against the researcher's 
design, rather than against the system user's requirement. For this concept 
of correctness to have a straightforward meaning, the semantics of the 
researcher's system specification must be quite clear, that is it must be 
possible to express it formally. There is no problem, in principle, if the 
system is a consequence of a mathematical theory. If, however, the program 
is the model, in the sense discussed in the previous section, then we are 
reduced to talking about validating the program against itself! The researcher 
will probably have a detailed description of the program (perhaps similar in 
appearance to the extract given above of the description of Thomas), but this 
is not formal. The meaning of the description is worked out in the program. 
It is therefore possible that the researcher will be experimenting with a model 
which differs from his original intention in some unknown way, and which 
he does not fully understand. (He will have the program text, in some form, 
but it does not follow that he understands the model.) Of course, many 
programs which have independent formal specifications for part of them also 
incorporate heuristics, and that fact, strictly speaking, puts them into the 
same category. The researcher would normally make the assumption that he 
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does understand his program. He may make statements such as T did x and 
observed effect y\ in which x is his less-than-formal intention. What I wish 
to emphasize here is the obligation of the researcher to set himself high 
programming standards, so that he has a high degree of knowledge about his 
programs. 

If it is appropriate to do so, the experimenter should make use of existing, 
tested software. His laboratory may collect a subroutine library containing 
tried program modules to perform certain specific tasks. If he can incorporate 
some of these into his own program, he will not only speed its development 
and testing, but he will also, incidentally, assist in trying the modules as he 
runs his experiment. An important reason for trusting the numerical accuracy 
of the results which emerge from established information retrieval labora­
tories such as Smart8 and Cambridge University6 is that 'standard' programs 
and packages are used whenever possible. Frequent use over several years 
should have revealed most faults. 

All experimental sciences suffer to some extent from the inevitable 
fallibility of apparatus. In addition to doing all it can to ensure that the 
apparatus is working correctly, the research community must maintain a 
moderate scepticism in its reception of results: they should be checked by 
repetition. In information retrieval research, there is very little repetition of 
tests for this purpose, perhaps because the computer-orientated research 
community is so small. A useful repetition experiment would be expensive 
and time-consuming. It is not adequate to simply obtain a copy of the 
original programs, edit them if necessary, and run them again on another 
machine. Any faults in the programs would also be copied (and it is in the 
program that faults are most likely to be). The programs must be written 
again from an independent specification. Exact agreement between the two 
sets of results can rarely be expected. Differences in programming language 
facilities, and hardware characteristics, such as computer word-size will 
affect the respective programmers' interpretation of the specification in 
minor ways, which may in turn affect results. Whether a difference in results 
can be disregarded is a question that must be answered in the light of the 
nature of the computations. 

9.8 Conclusion 

The interaction between computer-based laboratory experimentation and 
information retrieval theory development has been very fruitful during the 
last decade or so. The skills that the experimenters have learned enable them 
to test (some) new ideas within days, or even hours. I am sure that the well-
developed situation in the laboratories has made a significant contribution to 
the considerable theoretical progress in the field. Some researchers appear to 
believe that their understanding of the information retrieval problem, 
through mathematical theories, has attained a plateau—quite a lofty plateau! 
In this work, there has been too little reference to the real world to justify this 
optimism. There is no denying the elegance and the power of the current 
probabilistic and term discrimination theories (to pick the most prominent 
examples) to prescribe retrieval programs which are very effective under the 
conditions obtaining in the laboratory. I have tried to point out reasons why 
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we should not be satisfied with this. What I think we need is an equally 
fruitful interaction between theory development and a new type of automated 
laboratory, closer to real life information retrieval services, where we can 
perhaps test models of human users in conjunction with theories of document 
collections. 
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