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Abstract 

In this study the performance of ten matching functions is inves

tigated. The performance is measured in terms of recall and precision. 

All ten functions are tested on the 82 document ADI collection; the best four 

are tested again on the larger 200 document Cranfield collection. It is 

shown that the Parker-Rhodes-Needham function has the best performance in 

the ADI collection below 0.50 recall; however, this function is the worst in 

the Cranfield collection test. Overall, the Cosine function shows the best 

performance. 

1. Introduction 

A document retrieval system, from a user's point of view, takes 

a request for information, in the form of a short verbal description, matches 

the request against the documents in the collection and returns those which 

by some measure are most relevant. 

Within the SMART system, all the documents have been analyzed auto

matically according to word frequency counts of keywords contained in a 

thesaurus. Each analyzed document is represented by a description vector of 

concept numbers with corresponding weights (the weight being proportional to 

the frequency of occurence of that concept). When a request is received, it 
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too is analyzed in the same manner as the documents and is represented by 

a description vector of concept numbers and corresponding weights. 

Within the system, request-document comparisons are made using a 

mathematical correlation coefficient. Each document is compared with the 

request by calculating the magnitude of the coefficient. The documents are 

then ranked according to the coefficient and hopefully according to the 

degree of relevancy with the request. 

The subject of this study is to evaluate several correlation coef

ficients to determine which one is the "best" to use. The "best" coefficient 

should be the one for which the largest number of relevant documents are 

found on the top of the ranked document list. 

Some work has been done with various correlation coefficients. 

In 1966, Manning and Hall analyzed several correlation coefficients and 

proposed two of their own, however, they did not present any conclusive 

evidence for an evaluation. It is the aim of this study to evaluate several 

of the coefficients previously used by Manning and Hall, including one which 

they proposed, as well as a few others which have been derived from other 

types of coefficients. 

The initial evaluation has been done on the ADI collection of 

82 documents and 35 requests. Since this collection is small, any con

clusion must be verified on a larger collection, such as the 200 document 

Cranfield collection. 

2. Weighted versus Logical Description Vectors 

A document description vector can take on two forms. One is a 

logical or binary vector in which every element is either 0 or 1 . Each 

position in the vector represents a concept (e.g. the first position represents 
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concept number one, the third position concept three, etc.)- Thus for binary 

vectors, if a 0 occurs in the third position, concept three is absent from 

that document, and if a 1 occurs in the third position, concept three is 

present. 

The second type of vector is a weighted vector. Ideally, the posi

tions in the vector have the same interpretation as for binary sectors. 

The difference is that the value in each position is 0 if the concept is 

not found in the document, or some integer j where j > 0 is proportional 

to the number of times the concept appears in the document. In the SMART 

system a weight of 12 is given to concept k if concept k occurs once 

in the document, 2^ if k occurs twice, etc. Since approximately 60G 

concepts occur in the thesaurus, each document description vector would 

normally have a length of 600 positions. To reduce the memory space needed, 

only those concepts with non-zero weights are retained in the vector, the 

concept number and weight both being packed into the same memory location. 

The use of a correlation coefficient in the two systems poses 

some problems. A coefficient defined for binary vectors may have a specific 

interpretation, either logical or statistical. However, the same coefficient 

used with weighted vectors may lose its former interpretation. For 

example, given the two vectors 

v = (1,1,0,1,0,1,0) 

w 3= (1,0,1,1,0,1,1) 

the expression 

v.w. 
-I-I 

i (1) 

is interpreted as the number of matching terms or the number of concepts 

£ 
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the two vectors have in common. The summation equals 3> meaning there are 

three concepts found both in v and w , namely concepts 1 , 4 , and 6 . 

However, the same expression used with weighted vectors does not 

produce the same simple interpretation. For example, given the two vectors 

v = (12,2M, 36,0,12,0) 

w = (2^,0,12,2^,0,12,36) 

the above equation (EQ-l) gives a value of 1296. Although each of these 

vectors contains- the same concepts as the binary vectors above, and each have 

the same three concepts in common, there is no simple interpretation for 

the number 1296. The closest interpretation is that it produces a relative 

value which can be compared with another figure derived by using the sum

mation on v and some other vector w* as a measure of the matching con

cepts, thereby it determines which vector, w or w! , matches better with 

v . 

An example of an expression which doesnft lose its meaning when 

weighted vectors are used instead of binary vectors is the following 

i=l 

This expression represents the absolute length of the vector in t-space, 

where t is the number of concepts possible in the description vector. 

There exist coefficients other than these two to measure the simi

larity between documents. For the most part, these coefficients are used 

in thesaurus construction and measure the similarity between concepts. 

When calculating the term - term association coefficient, several of the 

expressions discussed above have a different interpretation. F°r example., 

given the term description vectors c.,^,... where for each term vector 
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the elements are denoted by a second subscript, i.e. for term i , the 

vector c^ = iS.ii,-l2>''' ,£ik^ ' 

E 

E 

îk-jk for a11 l»J (3) 

S^Sy for all i,j 00 

k 

The first summation gives the number of documents having both terms i and 

j . The second summation gives the number of terms that documents i and 

j have in common. It is identical to expression (l) discussed previously. 

3'. The Correlation Coefficients 

This section contains an analysis of the various correlation coef

ficients considered in this study. Each is analyzed according to its origin, 

initial interpretation, modifications made and final interpretation as a docu

ment - document correlation coefficient. 

It must be noted that there is a basic difference between the 

document description vector and the request description vector. The former 

is taken from an abstract of the article which may consist of several sen

tences. The latter is taken from a very short request. In the 82 document 

ADI collection, the maximum number of concepts in one description vector 

is kk, the maximum weight found in 96. Among the 35 requests the. maximum 

number of concepts in one description vector is 11, the maximum weight found 

is 48. Actually, most of the weights in the request vectors are 12. It is 

seen therefore that the document description space is not the same as the 

request description space. This must be kept in mind when analyzing the 
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various coefficients. 

A) The Inner Product 

Perhaps the simplest matching function is the inner product. It 

is defined for two vectors v and w as 

v • w = ) v.w, 

- - Z - - i _ 1 

i 

This is the same expression mentioned previously and denoted as (1) and 

(M. 

If v and w are binary vectors, then the inner product is equal 

to the number of terms both vectors have in common. When weighted vectors 

are used, much of the significance of the inner product is lost. It no 

longer is a measure of the number of concepts found in both v and w . 

It does, however, give a relative measure of the total weight of the matching 

concepts, although it poses some problems since it is not normalized. For 

example if 

v = ( 0, 2,12) 

2 l = ( 0,13, 1) 

Wg - ( 0, 1, 3) > 

the inner products are 

v • wx = 2(13) + 12(1) = 38 

v • Wg « 2( 1) + 12(3) - 38 . 

The inner product of v with both w. and w^ gives 38, even though the 

two w-vectors are very different. Because of these problems, the inner 

product is not used in the evaluation; it is mentioned here since it forms 

the basis of several other coefficients. 
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B) The Cosine Coefficient 

This function was proposed by Salton and has the following form 

c - i * 
E - A 

L (i')2 • E < * w , ) 2 

i=l i=l 

It is used as a term - term association coefficient as well as a document -

document correlation coefficient. In both cases its interpretation is the 

same. If v and w are t-dimensional vectors, then C is the direction 

cosine in the term space or document space of the angle subtended by the 

vectors v and w . The interpretation also does not depend on the type of 

vectors used, whether they be binary or weighted. 

Since the denominator is the product of the absolute lengths of 

the vectors in t-space, it increases with an increase in the vector length. 

If the two vectors are increased in length, the inner product will increase 

by an amount equal to or less than the denominator. Since the possible 

number of matching concepts tends to increase with increased vector length 

and since the cosine correlation generally decreases, this function has at 

least one serious fault, i.e. length dependency. 

C) The Jfirpersine Coefficient 

This function was proposed in the work of Hall and Manning and is 

designed to reduce the length dependency of the cosine function. The Hypersine 

function is 
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E 1&& 
,„ i=l 
HS = 

0 l< 

V V 
) v .v .w, • ) w.w.w 

La ""i""1"1 La ~i"1~ i=l i=l 

This correlation coefficient is basically the same as the Cosine 

coefficient already described except that within each summation, another 

factor has been added. The numerical effect of this added w, factor is 

zero since it can be divided out. The effect of the factor is to reduce 

the magnitude of the document vector length (the vector v being the 

document description vector), since the product ZAY^IA ^S z e r o when 

v. > 0 but w, • 0 . This term therefore is positive only when both v. 

and w. are greater than 0 , i.e. when concept i is found in both w 

and v . In other words, the length of the document vector is calculated 

in the subspace of the request space. Since the document vector is usually 

much longer than the request vector, the tfypersine reduces the dependency 

on length of the Cosine function. 

D) The Overlap Coefficient 

In an effort to measure the amount of overlap between two vectors, 

the following formula was proposed 

\ min (vj , w\) 

OL = 

mm 
& • & 
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It was originally proposed for binary term vectors, where the summations 

are taken over i=l,...,t , where t equals the number of documents in the 

collection. 

Without any modifications, the function may be used with weighted 

vectors, in which case the summations are taken over i=l,...,d , where d 

equals the number of concepts in the description vector. 

The numerator of the function is the smallest vector in the docu

ment space consisting of elements from v and w . It is divided by the 

smallest vector, either v or w . In the case of weighted vectors, "smallest" 

means the least sum of weights. 

E) The Maron-Kuhns Coefficient 

This formula was originally proposed as a measure of association 

between index terms. Used with binary vectors, it measures the number of 

matching terms for two given term description vectors over and above the 

number of matching terms expected for purely random vectors. The formula is 

M-K = 

where the symbol w. is the complement of w , that is, if j£. = 0 , 

w. = 1 and if w, • 1 , w. = 0 . All summations are taken from i = 1 to t , 

where t equals the number of documents. The vectors v and w are binary 

term description vectors. 

The numerator can be written as t5 where 

8 • Lv^ ; — 
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by making the simple substitution ) v. = y v.w. + \ v w and a similar 

& • 
substitution for ) w. . The first term in the expression for 5 gives 

the number of documents containing both terms v and w and the second term 

is proportional to the frequency of documents both having terms v and H if 

both v and w were random vectors. 

For random vectors 5 = 0 giving a value of 0 for the coefficient. 

For vectors in which there are a greater or smaller number of matching docu

ments the expected number 5 is greater than or less than 0 . The range 

of the function is then -1 ^ M-K ^ +1 , +1 signifying perfectly correlated 

terms and -1 signifying perfectly uncorrelated terms. 

When the Maron-Kuhns coefficient is modified to be used as a docu

ment - document correlation coefficient, its interpretation is altered. 

The summations must now be taken from i = 1 to d where d equals the 

number of concepts in the description vector. The formula then gives a 

measure of the number of concepts found in both document v and document 

w over and above the number expected if both v and w were random vectors. 

Further problems arise when the document description vectors are 

weighted vectors instead of binary vectors. One problem is the question of 

complementation. To solve this problem, the complement of an element of a 

vector, is defined as the maximum concept weight found in the entire collec

tion in which that vector is found minus the concept weight to be complemented. 

A second problem is concerned with all the zero elements of the 

document description vector. If the above method of complementation were 

used, the complement of a concept weight of zero would equal the maximum 
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concept weight in the collection. If the number of concepts in the thesaurus 

is large and the number of concepts in any document description vector is 

much smaller, a large number of zero elements will occur in a vector. When 

these elements are complemented, all the elements will equal the maximum 

concept number. In this case, the summation ) JJf.w will be very large XA"' and 

its product with ) v.w. will be much larger than \ v.w. • ) * A > 

giving a coefficient which will always be near 1. To avoid this problem, 

only non-zero concepts are complemented. 

In the ADI collection the maximum document weight is 96 and the 

maximum query weight is h8. The complement for an element in a document 

vector or a query vector is respectively 
_ 
v, m 96 - v. 
~i "M. 
w, = 48 - w. 
-H —i 

if v or w, is greater than zero, otherwise the complement is zero. 

One further alteration made, in order to avoid negative correlation 

coefficients, results in a change in the range of the formula. It has been 

adjusted so that the rang* is from 0 to +1 by adding 1 to the unadjusted 

coefficient and dividing by 2 . 

F) The Parker-Rhodes-Needham Coefficient 

This formula was originally proposed as an index term - index term 

association measure for use with binary term vectors. The function is 
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Y*& 
E-+ &" L1** 

where all summations are taken over i = 1 to t , and where t equals the 

number of documents in the collection. Since the term vectors are binary, 

the interpretation of the terms in the denominator is simple. The first 

term is the number of documents containing term v , the second is the number 

of documents containing term w , and the third is the number of documents 

containing both terms v and w . On the whole, the denominator gives the 

number of documents containing at least one of the terms. 

For two identical terms, the denominator equals the numerator and 

the association is 1 . For two independent terms, where a document does 

not contain both terms, the numerator is zero and the association is 0 . 

When term - term associations are calculated, all the terms are 

usually compared with all the other terms at the same time, using matrix 

multiplication. The result is a matrix whose elements are terms of the 

above formula. Since matrix multiplication requires the calculation of 

many inner products, each of the entries in the association matrix is the 

result of an inner product and therefore, so is each term in the P-R-N for

mula. Thus, the summations j v. and ) w. are in practice calculated 

by v-v and w-w which is the same as \ v.v. and y w.w. which is Ev.v. 
- i - i —l—i 

the same as ) (v.) and y (w.) , where the summations are taken 
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as before. 

The above discussion is necessary when describing the modifications 

made to use the P-R-N formula for document - document correlations. With 

weighted, document descriptions vectors the formula becomes 

JjVi 
P-R-N = 

)jii)2 + 2 ^ d i)2 - 2_,Zi2fi 

where the summations are taken from i = 1 to d , and where d equals the 

number of concepts in the description vector. 

The interpretation of this function is not simple. The closest 

meaning which can be attached to the denominator is that it represents 

twice the maximum weight of the inner product of the two vectors, assuming 

perfect correlation, minus the actual inner product. The difference, there

fore, will always be greater than or equal to the actual inner product. 

By the argument previously used to determine the range of the 

binary P-R-N function, the range of this function can be shown to be from 

0 to 1 , inclusive. 

G) The Stiles Coefficient 

The Stiles function incorporates the parameter 5 as it was 

defined for the Maron-Kuhns function. The formula is 

f n( |n»| - | ) 2 \ 
St - tog^ 

{(&) (&) (• - &) (• • I » 
Since the formula was originally proposed to calculate index term - index 
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term associations, n equals the number of documents in the collection and 

all the summations are taken from i = 1 to n . Stiles defines his formula 

as based upon the chi-square formula and gives the distance from the expected 

frequency of occurrence assuming no association* The magnitude of this 

function may be greater than 1 due to the presence of the Log function. 

By a simple analysis, it can be seen that the four factors in the 

denominator are the number of documents containing term v , and the number 

containing term w , the number not containing term v , and the number 

not containing term w , respectively. 

This formula has been adapted for use with weighted vectors. 

The modified formula is 

r 

N 

St = In \ e 

( 

YJ& % 

ikk lUh • N 

N 
2 

^ \ 

(v , ) ' (w. ) ' 

ikk Ikk 

<v 
N -

ikk 

Yfj 
Ikk 

J 
Ignoring the factor of ikh , the function is the same as Stile's original 

function except that the denominator contains the sum of squares instead of 

only the sum of the terms• The reason for this change has already been 

explained in the discussion of the Parker-Rhodes-Needham coefficient. One 

other variation from the original function is the use of the natural logarithm 

instead, of the base 10 log. This substitution was made in order to facili

tate coding on the computer, where a natural logarithm function exists. 

No difficulty should arise since both logarithms are increasing functions. 



The use of the factor ikk is intended to simulate the original 

function. In essence, dividing by ihk partially eliminates the effect of 

weights and therefore approximates binary terms. 

The definition of N presents some problems. Originally, it was 

intended to let N equal the number of concepts in the thesaurus, about 

610. However, if this were done, it is possible that the last two factors 

in the denominator might become negative. Therefore, to avoid this problem. 

N is defined as (k)(6l0), the (k) being the average concept weight divided 

by 12, the base of the weighting system. (̂ 8 was arbitrarily chosen as the 

average concept weight.) The coefficient is assured of being real, and no 

attempt to normalize it has been made, so that values greater than 1 are 

possible. 

H) The Average Coefficient 

This formula simply calculates the average weight of all those 

concepts which are found in both description vectors v and w . The for

mula is 

(y4 •w 1 ) (6 i ) E' 
where 

Av -

5 i = 

N 

if both v. and w. > 0 

0 if either v. or w. = 0 , 

and where N equals the number of matching concepts. The summation is 

taken from i • 1,...,d , where d equals the number of concepts in the 

description vector. 

It was originally intended to use this function, time permitting, 

to determine whether it is more important to have fewer matching concepts 

at higher weights than it is to have more matching concepts at lower weights. 
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I) The Reitsma-Sagalyn Coefficient 

This function is based on the idea that the relative weights of 

the matching concepts are very important. In other words, it is more impor

tant to have weights of matching concepts equal rather than unequal. The 

function is 

t 
r ^ minCv^w^ 

/ , maxCv^w^ 

R-S - O i _ , 

where N equals the number of matching concepts. As an alternative, N 

may equal the maximum number of concepts found in the document or request 

description vector. 

The range of this function is 0 to 1 , where 0 indicates no 

correlation and 1 indicates perfect correlation. 

This function can be used with either binary or weighted vectors. 

The main problem with this function is that it depends entirely 

upon the relative weights of the matching concepts. As described in the 

beginning of this section, the requests are usually much shorter than the 

abstract from which the document descriptions are taken. It follows, then, 

that the relative weights of the concepts in the request vector do not 

indicate the relative importance of the concepts, i.e. many weights tend 

to be the same and, therefore, the relative importance of the various concepts 

cannot be determined. 

It therefore seems reasonable that if this coefficient were used 

in a system with a relevance feedback system, it might prove more powerful. 

Ideally, it should be used in a system where the requests are such that the 

user indicates the relative importance of various keywords in his request, 
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and all the request weights are adjusted so that the request space approxi

mately equals document space, (i.e. adjusting the request weights so that 

the average weight among the requests equals the average weight among the 

documents.) 

k. Method of Evaluation 

The power of the various correlation coefficients is determined 

by the use of recall - precision plots. Recall is defined as the proportion 

of relevant documents retrieved, while precision is defined as the proportion 

of retrieved documents which are actually relevant. 

number of documents retrieved and relevant 
R e c a l • " * • . i ii 

total number of relevant documents 

number of documents retrieved and relevant 
Precision = 

total number of documents retrieved 

For each of the queries, a recall - precision graph is produced. 

These are then averaged over all the queries. The method of averaging is 

as follows: 

1) the peaks of each recall - precision graph are connected and 

the first peak is extrapolated horizontally to the y-axis 

(precision axis where recall equals zero); 

2) the value of precision along this constructed line is thus 

determined at twenty different points along the recall axis, 

i.e. at recall equal to .05, .10, .15, •••, «95, 1.00; 

3) for each of these points, the precision is averaged over all 

the queries; 

k) a final graph is plotted along these twenty average precision 

values. 

An averaged recall - precision graph is obtained in the above 
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for every coefficient to be evaluated. The final evaluation is based on the 

comparison of these average graphs. The coefficient which produces an average 

recall-precision graph above and to the right of all the other graphs is 

assumed to be the best coefficient, with respect to that document collection 

and that set of queries, since for any value of recall, the precision is 

higher than for any other coefficient and for any value of precision, the 

recall is higher than for any other coefficient. 

It is possible that two average recall-precision graphs may 

coincide or intersect. In the former case, no conclusion can be made as to 

which coefficient is better. In the latter case, one coefficient may be 

better.than another for a given range of recall. For example, is the coeffi

cient D, gives an average recall-precision graph above that for coeffi

cient D2 in the range of recall from 0 to A o , it may be concluded that 

coefficient D is better than Dp when the user is interested in the 

first kofo or less relevant documents. If, however, the user is interested 

in finding 50$, 75$, or lOCffo of the relevant documents, D, is no longer 

the most powerful coefficient. The best performance, in this, might result 

from the use of D to find the first Uo$ relevant documents and then the 

use of Dp to find the remaining relevant documents. 

One danger exists in using two different coefficients to process 

a request. It may happen that the specific documents contained in the first 

hcffo retrieved by D, are the same documents which Dp retrieves last. In 

that case, using the two together might not give the desired performance. 

Most probably, coefficient D-. would be used if the user were only interested 

in hOPJo or less of the relevant documents. If he were interested in more, 

DQ might be used. 
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5. Experimental Results 

The following functions have been tested with the use of the ADI 

collection, making four comparisons in each test as follows: 

Table 1 - Overlap, Cosine, Parker-Rhodes-Needham, Reitsma-Sagalyn. 

Table 2 — Average, Stiles, Reitsma-Sagalyn (sorted up), Cosine. 

Table 3 - Cosine, Hypersine, Maron-Kuhns, Reitsma-Sagalyn (modified) 

with the Cranfield collection: 

Table k - Overlap, Cosine, Parker-Rhodes-Needham, Stiles. 

The tables contain averages, from which the average recall - precision graphs 

were made, and the standard deviation (S.D.D.) of the averages. 

The data in the tables are summarized in Figure 1 which shows 

the performance of all coefficients tested on the ADI collection. 

Recalling the discussion of the recall and precision measures as a 

means for evaluating the performance of different correlation coefficients, 

Figure 1 shows the following output; 

1) Three correlation functions exhibit a decidedly better perfor

mance than the others. They have been replotted on a larger scale 

on Figure 3 to show the difference in behavior in more detail. 

The functions are Stiles, Cosine and Parker-Rhodes-Needham. 

2) In the recall interval 0 - 0.50 the Parker-Rhodes-Needham 

coefficient has a better performance than the other two; in the 

recall interval above 0.50 the performance of this function 

is worse than the others. This indicates that the Parker-Rhodes-

Needham function gives the best results in a system with a cutoff 

value smaller than 0.50 . 

3) Comparing the Cosine and Stiles coefficients, the former has a 

better performance below 0.55 recall, while at higher recall 

values, the performance of both functions is almost identical. 

Therefore, in the entire interval, the Cosine coefficient is better 

than the Stiles function. 
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k) These conclusions are further supported by the almost equivalent 

values of the standard deviations of the respective functions. 

5) The other functions show a performance strictly below the above 

mentioned coefficients. Only the Overlap coefficient approaches 

the three best and only above 0.75 recall which region is fairly 

insignificant in practice. 

However, the four best functions, when tested with the Cranfield 

Collection, exhibit a different behavior: 

1) The differences between the functions have increased. 

2) The Cosine function shows a better performance than the other 

three (i.e. the Parker-Rhodes-Needham, Stiles, and Overlap coef

ficients). 

3) The Parker-Rhodes-Needham is not close to the Cosine anymore; 

it is the worst of the four. 

k) The performance of the Overlap is no longer the worst, in fact, 

it remains very close to the Cosine and Stiles coefficient. 

5) The standard deviation of the Cosine function is much smaller 

than for the other functions. This supports the conclusion that 

this function is better than the rest in this collection. 

6) The overall precision at the same recall is lower in the Cran

field collection than in the AD1 collection. 

6. Discussion 

In this section, an attempt is made to explain the behavior of the 

various coefficients and to suggest possible modifications for future inves

tigations. 

Cosine: 

The Cosine function shows a consistently high performance in both the 

ADI and Cranfield collections. Since it is length dependent and since the 

Hypersine tries to reduce this dependence unsuccessfully, a compromise some-
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where between the Cosine and Hypersine may prove effective is length depen

dency inhibits the efficiency of the Cosine function. 

Hypersine: 

It is seen that the performance of the Hypersine function is worse 

than the Cosine. Therefore, it seems as though the non-matching concepts of 

the document which were deleted in calculating the document vector length 

are indeed important. Evidently, some degree of length dependency is bene

ficial in a matching function and the Hypersine tries to eliminate this 

dependency incorrectly and to too great a degree. 

Maron-Kuhns: 

The performance of this function is far below the three good func

tions. There are two possible explanations. One is the problem of comple

mentation, i.e. the complement of a weighted vector may be defined in a 

better way. The second possible explanation is the importance of the non

zero non-matching weights. In this study, only the matching weights were 

complemented. It might be advisable to complement the zero weights in one 

vector for those concepts with non-zero weights in the other vector. It 

still does not seem advisable to complement all the zero weights for the 

same reasons as stated previously. 

Overlap: 

The performance of the Overlap coefficient in the ADI and Cran-

field varies drastically. The explanation may lie in the differences between 

the subject content of the two collections. Since the weights of the request 

are usually less than the weights of the document, the numerator is not 

strongly influenced by a matching concept with a very large weight in a 
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document. This insensitivity may explain the poor iferformance of this func

tion compared to some of the other coefficients. 

Parker-Rhodes-Needham: 

The striking difference in performance of this function in the 

ADI collection, where it proved very powerful, and in the Cranfield collec

tion where it performed rather poorly is puzzling. Further evaluation with 

other document collections is needed before any conclusions as to its value 

can be made. 

Stiles: 

This coefficient shows a consistent high performance for both the 

ADI and Cranfield collections. It is far less sensitive to variations in 

collection characteristics than the Overlap and the Parker-Rhodes-Needham 

coefficients. The explanation of this phenomenon is difficult due to the 

complexity of the formula; however, its quasi-binary character seems to 

give reasonable results. One possible refinement may be a better definition 

of N . 

Reitsma-Sagalyn: 

Three different modifications of this formula were used in this 

study. In one of them N equals the number of concepts in either the query 

vector or the document vector (the maximum of the two). Another form results 

in using the number of matching concepts for N . When this is done, it is 

observed that many relevant documents occur at the end of the ranked list. 

This leads to the third modification in which the second form was used but 

the documents were ranked in the reverse order. In general, this formula proved 

ineffective. 
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