
II-l

II. Operating Instructions for the SMART Text Processing
and Document Retrieval System

M. E. Leak

1. Introduction

SMART is a fully automatic programming system designed for the analysis

of English text and for the processing of information requests. The SMART

system can also be used to perform complete studies of information

retrieval systems, vocabulary and dictionary investigations, and many

other linguistic and classificatory studies. Among the features of the

system which are available for purposes of content analysis are: thesaurus

lookup, phrase searching methods (including complete syntactic analysis),

hierarchical processing, statistical association methods, and title/abstract/

text differentiation. Intermediate and final results are available in

convenient form for detailed study, or alternatively, a complete retrieval

technique may be evaluated automatically. A full description of the methods

and programs used may be found in [l]; shorter writeups are available in

[2], [3], and [k].

The system described here supersedes the operating system described

a year and a half ago in [5] and [6]. The basic differences between new

and old systems are a widely expanded system capacity and faster processing

speeds. In future years, it is hoped to experiment with time-sharing

environments, and additional processing algorithms are being developed.

Since the programs have reached a state of semi-stability, however, new

operating instructions are being prepared.

n-2

It is assumed that the reader has a general understanding of the

purpose of the SHfcRT system. Reference to [2] or [5] provide this

background. The main purpose of the present section is to replace the

obsolete operating instructions in [6].

1.1* Processing Sumnary

SHIRT accepts as Input natural language English text in a foim

close to normal typing. Input is basically of two forms: requests9 or

queries for information; and documents, or individual units of a collec

tion of English articles, or abstracts, which are compared with the

requests.

The search procedure makes use of a flexible data representation

system in which eabh document is analyzed into a "concept vector". The

concept vector consists of a list of "concepts11 (each with a weight) that

are associated with the document. If each possible concept is imagined as

a dimension, or a direction in a very-high dimensional space, the "concept

vector" representation of a document is now equivalent to an n-dimensional

vector; a concept vector is thus readily compared with other, similar

representations by simple correlation procedures.

The meaning of a "concept" can differ greatly from run to run. A

concept may be simply an English work; or it msy be a set of English words;

or it may be a phrase or set of phrases; or it may be a node label in a

hierarchical classification system; or any combination of the above.

Provision is also made for future inclusion of other types of concepts;

e.g., concepts derived trm an author's name or from a journal citation.

In short, a concept may represent virtually any feature of the text of a

document which reflects the document content.

II-3

The analysis of English language text for the detection of concepts

is performed without human intervention* Text is analyzed by a set of

programs which operate in conjunction with two types of inputs:

a) A set of dictionaries, grammars, and hierarchies specifying the

relations between properties of the input English text and of

the concepts. The simplest possible dictionary, for example,

associates with each English word a distinct concept. A more

sophisticated dictionary, consisting in fact of a word thesaurus,

will define a many-to-many mapping of English word stems into

the concept vector space in which seme words are isolated as

common words, some are considered ambiguous and resolved into

their various possible meanings, and seme are combined with

synonymous terms.

b) A set of specifications which describe in what way the various

content analysis programs are to be applied and which dictionaries

are to be used. Specifications are used by the program to decide

what documents are to be processed, what dictionaries should be

used, what algorithms for associating concepts with documents

should be employed, how much weight each contribution to the

document representation should be given, what procedures should

be utilized to compare requests with documents, and what output

is desired from the run.

Once the text analysis has been performed, and concept vectors are

available for all documents and all requests that have entered into the

system, the programs proceed by comparing the requests with the documents

to determine which documents are to be identified as "answers11 to the

requests. This list may then be compared with a "correctH list, obtained

as a result of a manual operation and supplied by the programmer, and

various evaluation measures may be computed automatically.

II-^

1.2. Operating Programs

The programs available fail into three categories:

a) Retrieval system programs consisting of a large, connected set of

programs which perform all the steps described in part 1.1.

These programs use a set of dictionaries to operate on a

collection of English text, and produce answers to requests,

and evaluations of processing methods.

b) Dictionary preparation programs consisting of a smaller, but

also connected set of programs which prepare the various tapes

required by the program (a) •

c) Miscellaneous programs to perform various useful functions out

side the main system.

A description of the instructions for running programs (a) is given

in parts 2, 3, and k of these instructions* Programs (b) can be run using

the instructions in part 5, and programs (c) are discussed in part 6.

2. Basic Operating Procedures

SMART operates under a normal FORTRAN II monitor system. As already

mentioned, the programs require a set of instructions, a library tape, and

a set of data. The Usual procedure is to supply the programs on one tape,

the library on a second tape, and the data on another private tape and/or

on the monitor input tape. In addition, up to seven scratch tapes may be

needed. Any data for the monitor input tape follows the run specifications.

2.1* Run outline

A complete processing run proceeds as follows:

a) Monitor control cards are supplied to sign on to the computer,

II-5

to instruct the operator to mount necessary tapes, and to transfer

control to a small program called CLCHN which calls in the SMART

programs from the program tape.

b) The instructions for the run are read from the monitor input tape

and decoded*

c) The English language input text is read and analyzed. This includes

a lookup of the text in a thesaurus, and an optional lookup in

a statistical phrase dictionary and a syntactic phrase dictionary.

Printouts of the original text and the words missing from the

dictionaries may also be performed.

d) Partial concept vectors are formed for these documents. These

partial vectors contain all concepts derived from individual

words and phrases within each document. The concepts appear in

their original uncombined form.

e) Partial concept vectors from documents looked up in this run,

and concept vectors from documents looked up in preceding runs

are collated, and the weighting schemes specified in the instruc

tions are applied to produce concept vectors in the proper form

for correlation. If desired, the detailed results of the weighting

may be printed.

f) The concept vectors may now be expanded by means of statistical

concept-concept associations, or through a hierarchy associated

with the thesaurus. Various options may control the type of

expansion, and may specify the documents to be expanded.

g) The request vectors are compared with the document vectors using

the correlation procedure chosen by the user. All documents in

the collection are ranked with respect to each request.

h) The highest ranking documents are printed out for each request.

This is the basic output of the simulated retrieval system.

i) The document rank list and the highest ranking documents are

printed and compared with the list of documents previously desig

nated as relevant to the request. Measures are computed which

II-6

indicate the success or failure of the run, relative to other runs.

The instructions to be used to regulate these procedures are described

in part 3; the data needed by the programs are discussed in part k*

2.2. Tape Setup

The tapes used by SMART are named AONE, ATWO, ATHREE, . •. AEIGHT, BONE,

BHWO, BTHREB, ..., BSDC. By means of two internal tables, these names are

translated first into logical tape numbers and then into physical tape unit

addresses. This last translation takes place using the operating system

table (IDU), and SMART is therefore adaptable to almost any tape assignment

of the individual monitor system. To aid in running SMART under a given

monitor, the first table (which translates SMART tape names to logical

numbers) is variable at object time through the normal specification system.

Unless altered in this nay, the SMART tapes correspond to the 709^ tape

drives with the same names under the (10U) table of the Harvard monitor

(see Table 1). Because of this convention, the distinction between SMART

tape AFIVE (for example) and the physical drive A5 will not be made in this

writeup, although the correspondence is indirect.

SMART assumes that input will be on A2 (actually ATWO) in accordance

with the practice in use for most FMS operating systems. Output print is

placed on A3; punching is done through the offline punch tape B*t. The

SMART program tape is placed on B3; it is a normal FM5 chain tape (see

part 5*3)* The library tape is mounted on unit B5; any input data tape

goes on A6. All remaining tapes (Ak, A5, A7, A8, Bl, B2, B6) are used as

scratch tapes. AU is needed for any lookup, and is also used if ANSWER

MEDIUM or ANSWER LONG is requested. A5 is needed for the lookup, and for

II-7

any correlations or expansions* A7 is needed for correlations or expansions,

or for syntactic processing. A8 is needed only for concept-concept or

hierarchical expansions. Bl is needed for expansions sad for syntactic

processing* B2 is needed for correlations, syntactic processing, and

expansions* B6 is needed for correlations, phrase lookup, and expansions.

If a tape is not needed by the specified process, it need not be mounted.

2.3. Input Deck Setup

Since the SMART system runs under a normal FORTRAN H monitor system

(FMB), the usual deck setup is employed. The job card (system accounting

data) appears first; then come operator messages and monitor control cards.

The program, consisting usually of a short routine which merely calls in

the main programs tram the program tape, follows. After this short

loading deck (labeled CLCHN) comes the monitor * DATA, card* The data

which follow consist of the instruction cards and the data for the proces

sing runs. The instructions are on A2. The data, which usually consist

of requests, texts, and relevance judgments, follow and may be on either

A2 or A6. Several processing runs may be stacked in the same IMS job,

as explained in the next section* Alternatively, each processing run

may be made a separate FMB job* This is often preferable if new tapes

must be mounted, since the SMART system makes no provisions for pausing

to allow the operators sufficient time to change the tapes*

3* Specifications for the SMART Retrieval System

The first date required by the SMART programs are the specifications

which direct the processing to be performed during the computer run. These

specifications must immediately follow the monitor * DATA card.

II-8

Specification input always appears on the monitor input tape (FORTRAN

logical tape 5), even if SMART tape A W O is reassigned to another unit*

This exception to the tape addressing system is made to permit the program

to get started. One computer job may involve several sets of specifi

cations, each of which Initiates a processing sequence* In this case,

each set of specifications is followed by the data required by that set

of instructions. The AGAIN specification (see part 3*8) causes the system

to expect a second set of instructions and data following the first set.

Each section of a SMART processing run begins with the specifications

for that section. The specifications are punched in columns 1-72 of

as many cards as are needed. A specification consists of an alphabetic

word which identifies the specification, followed by its "value" if it

is not an "on/off" specification. The names and meanings of all specifi

cations, and their allowed values, are given in part 3* Whenever a

specification differs from the normal value for the item specified (see

Table 2), the user must punch the specification and the value (if any)

on the specification cards. Specifications which are given their normal

value may be omitted, or may be punched to improve the clarity of the

listing, if the user so desires.

Any specification may be punched anywhere on a card. However, no

specification may be broken between two cards, nor may a specification

and its value appear on different cards. The specifications are sepa

rated by one or more blanks; the value of a specification should follow

the specification itself separated by one or more blanks. If the value

of a specification is a number, care must be taken to punch it

correctly. If the value of a specification is restricted to integers,

II-9

the number given oust not have a decimal point (2, not 2.0) • If the value

of a specification is allowed to be a fraction, it must be punched as a

FORTRAN floating-point number, i.e. it most have a decimal point (or the

letter E). For example, STATWT 1 is incorrect; the specification must

read STAOTT 1. or STATWT 1.0. In Table 2, x indicates a floating point

number and n indicates an integer.

If a specification appears more than once, only the last occurrence

is used. Specifications may occur in any order, except that the last

specification (and only the last) must be either STOP or X.

3*1. Specifications Affecting Lookup

The SMART lookup uses a stem dictionary together with a suffix list

for an accurate determination of both semantic and syntacic roles. The

dictionary is stored in a semi-tree format, as is the suffix list. Details

of the lookup may be found in references [U] and [12].

It should be noted that the lookup is sufficiently accurate so that

if, for example, IDES and HOP are two stems in the dictionary, HOPPING

will be found as HDP + P + DIG while H3P1NG will be found as H3H5 - E +

ING; also, if EASY and EASE are stems, EASIER is found from EASY while

EASING is found from EASE.

The specifications associated with the lookup are:

ENGTXT causes the Baglish text being looked tip to be printed;

NOTPND causes the words not found in the dictionary to be printed;

PUNCH causes document vectors to be punched out (with ghrases, if

searched for) in binary form. This saves time in future

runs since the lookup need not be repeated.

11-10

3.2. Specifications Affecting Phrase Searching

Two basic phrase searching methods are available. These are called

the statistical and syntactic phrase searching procedures* Both use

pre-designed dictionaries of phrases which are searched against sentences

in the texts. Statistical phrase searching is the more common of these

methods. The phrase dictionary consists of a set of pre-assigned word

pairs or word n-tuples (where n can be 2,3,1*,5 or 6). Each word n-tuple

has a "phrase concept number11 associated with it, that is used as the

concept number representing the whole phrase (as distinguished from the

individual concept numbers which give the components of the phrase)•

Every sentence is scanned for occurrences of phrase components, and when

all of the n̂ phrase components have been found to occur at least m times

in the sentence, the phrase is considered to have occurred m times, and

a weight is entered accordingly fog. the "phrase concept number" • The

method of writing the phrase dictionary on the library tape is given in

part 5*1»2.

It is noted that this is a rather imprecise type of search, since

the words searched for may occur anywhere in the sentence in any order.

For example, the sentence "Despite a second, larger order of textbooks,

approximately twenty-five percent of the students are still without them"

will be considered as containing the phrase "second order approximation".

A more precise type of search is available through the "syntactic phrase

searching" procedure. This uses the "criterion tree" dictionary (see

5.h.h) in which a complete syntactic/semantic/structural specification

of each phrase is given. If a syntactic phrase is to be detected,

1) the components of the phrase must have the proper semantic

n-ii

value, i.e. they most be assigned the proper word stem or the

proper thesaurus category;

2) the components of the phrase must have the proper syntactic

role (e.g. "automatically translating" would not match "automatic

translation");

3) the components of the phrase must exhibit the proper syntactic

dependency relations with each other (e.g. "blind Venetian" would

not match "Venetian blind").

This phrase searching procedure makes use of the Kuno multiple-path

syntactic analyzer [7,8,9] to determine the syntactic roles and dependency

relations of the words in the sentence. This makes possible very accurate

searching, in that, for example the phrase "solid state" would not be

recognized as appearing in "Seme authors whose other work is solid state

that information retrieval can be performed without accurate syntactic

analysis."

It should be noted that the syntactic phrase searcher is vexy slow

and also very erratic in its timing. It is hoped that the use of a new

version of the Kuno syntactic analyzer will alleviate these problems [10].

The specifications to be used in the phrase searching procedure

are:

STATER which causes a statistical phrase search to be performed;

SYNTAX which causes a syntactic phrase search to be performed;

NODBCO causes a table of the detailed correspondences between

tree nodes and sentence words to be printed;

SYNAflA causes the syntactic analyses of the text searched to be

printed.

11-12

An additional phrase searching method can be envisioned in which

statistical properties of words are analyzed to determine which words

appear to be occurring as phrases. SMART has in the past contained such

procedures, but due to the poor results obtained with the algorithms

tried, these have not been implemented in the present version. New

algorithms are under consideration, however, and specification CLWPR

has been maintained in the supervisor, indicating a call to a lookup

routine using statistically detected phrases. However, this specifi

cation is currently inoperative.

3.3. Vector Expansions by Means of Concept-Concept Correlation

. Concept vectors obtained from the words and phrases in one docu

ment may be expanded based on statistical data obtained from an entire

document collection. In this way, local variations in individual docu

ment vocabularies can be corrected. Procedures for these statistical

expansions are available in SMART through the form of concept-concept

correlation. This option involves the formation of a complete concept-

document occurrence matrix from the concept vectors of all the text

submitted in the run. Different concepts are now correlated, to find out

which concepts appear to exhibit a similar occurrence pattern in the

documents. This comparison is made on the basis of the rows of the

transposed concept document matrix in which each concept is represented

by rows of elements consisting of the numeric occurrences of the concepts

in the successive documents.

The correlation algorithms are as follows. Let the concept-docu

ment matrix be called A, so that A*, represents the number of occurrences

of concept 1 in document ^. Then, the correlation coefficient r is a

11-13

measure of relation between the rows A . (all i) and A . (all i). It has

the value 0 for totally dissimilar rows, and 1 for identical rows. Two

different numerical algorithms are available for the computation of r;

these are the cosine algorithm and the overlap algorithm. The cosine

algorithm is defined as follows:

rpq

The overlap algorithm is defined as follows:

sum A^> sum A^))
XL K K

where min(x,y) • the numerically smaller of x and y. Note that both

measures are symmetric; i.e., r _ •r_ .
pq qp

These correlations can now be subjected to a cutoff process defining

$.. as follows: s_ » 1 if r is greater than the cutoff value; • • 0
-ij P4> pq M

otherwise. The matrix S with both rows and columns labeled by concepts

now identifies the concepts which have similar document environments;

that is, the pairs of concepts which occur in the same documents have a

one at the intersection of their row and column.

This process can now be used for the expansion of the document vector

by augmenting all concepts by the list of concepts with similar environments.

The similarity matrix S can also be used as the starting point for

further correlations, however. Some writers feel that the truly significant

question is not "which concepts have similar document environments" but

"vhich concepts have similar concept environments". This question requires

an additional correlation, a correlation of the matrix S, to identify the

EWA

concepts which co-occur with similar concepts* For example, if one is

seeking to identify that "aeroplane" and "aircraft" represent the same

concept, one might deduce this not from the fact that they co-occur in

the same document, but that they each separately co-occur with words

such as "fusilage", "propeller", "aileron", .and the like. The SMART system

makes provision for iterated concept-concept correlation to any depth.

The specifications affecting this procedure are as follows:

CONCON n

MDDECC a

MDDE2C a

CUTCC x

CUT2C x

CONMIN n

CONMAX n

the number "n" is the number of iterations of the

concept-concept correlation process. "CONCON 1"

specifies simple first-order correlation;

a is either "COS" or "OVLAP" to specify cosine or over

lap correlation for the first concept-concept correlation;

a is either COS or OVLAP to specify the oorrelation mode

for concept-concept correlations after the first corre

lation, i.e., for the second and following iterations;

x is a number between 0 and 1 (0.6 is typical) to specify

the cutoff for the first concept-concept correlation;

x is a number between 0 and 1 specifying the cutoff for

correlations after the first;

n specifies the lowest concept number which will be

correlated. This specification is to be used primarily

with null dictionaries prepared by THES (see part 6.1)

in which the concepts are arranged by frequency, thus making

it possible to specify the lowest frequency word to be

correlated;

n specifies the highest concept number which will be corre

lated. CONMIN and CONMAX are used because the statistical

procedures are not accurate for words which occur either

very rarely or very frequently;

n-i5

EXPAND a a is either REQS, DOCS, or ALL and specifies whether

requests only, documents only, or all input is to be

expanded*

3^* Vector Expansion by Means of Concept Hierarchies

In addition to statistical means for expanding document vectors, one

may wish to expand vectors by means of a pre-assigned concept hierarchy*

Various types of relationships between concepts nay be specified and used

in expansion procedures. The hierarchy consists of structured trees of

concepts, in which each concept has a clearly defined "parent11, plus a

set of "brothers", and "sons". To designate looser connections, each texm

may be assigned a set of "cross-references". Expansion involves the intro

duction into the concept vector of the sons and/or brothers and/or father

and/or cross-references of each term in the original vector. The selection

of the method of expansion is by means of a weighting scheme, and is

discussed in part 3*5*

To perform a hierarchical expansion the specification HIER a is

given where a is either EXPAND or SHRINK. EXPAND indicates that the

final vector is to contain the original vector plus the related concepts

from the hierarchy; SHRINK indicates that the initial vector is deleted

from the final vector, and only the expanded concepts are used. For

example, if it is desired to generalize a vector, each concept could be

replaced by its parent using HIER SHRINK; HIER EXPAND would merely augment

each concept with its parent.

EXPAND a serves the same function as OONCON; a is either REQS,

DOCS, or ALL and indicates respectively that requests, documents, or all

input texts aire to be expanded.

II-16

3*5* Vector Formation

The final vector is formed by combining all the concepts introduced

from all sources with appropriate weights. The weighting parameters are

numbers which are zero or greater (and nay be greater than 1), indicating

the weight associated with each unit occurrence of the given concept in

the specified class. The weighting parameters are:

STEMWT x x is the weight associated with word stem concepts* It

should be a FORTRAN floating point number (e.g. 1.0, not 1);

STATWT x x is the weight for statistical phrases* STATPR must have

been specified when lookup was done; otherwise this

command is ignored* If STATPR was specified, phrases may

be ignored by giving STATWT 0.0;

SYNWT x x is the weight associated with syntactic phrases;

00C0WT x x is the weight associated with concept-concept expansion

concepts.

The hierarchical weighting specifications are used to select the

method of hierarchical expansion* Any number of expansions with arbitrary

weights may be performed simultaneously. There are four weighting para

meters, one for each possible mode of expansion* If the weight for a

possible expansion mode is zero, that expansion is not performed* If the

weight for a possible expansion is not zero, the expansion is performed

and the concepts derived from it are given the indicated weight*

ROOTWT x specifies the weight for expansion by parents;

BRANWT x specifies the weight for expansion by brothers;

LSAFWT x specifies the weight associated with expansion by sons;

CROSWT x specifies the weight associated with expansion by cross-

references*

n-17

Title and body differentiation is also performed by manipulating the

weights* Usually, the weight associated with the body of the text is

left at 1*0 and the weight of the title adjusted. However, to obtain

only title processing, the user specifies BODYWT 0.0 and TTTLWT 1.0.

BODYWT x x is the weight associated with concepts ftrcm the body

of the text.

TITLWT x x is the weight associated with concepts from the title.

These parameters apply to all sources of concepts (phrases, etc.),

including the expansion concepts (hierarchy and concept-concept).

LOGVBC this specification causes all weights to be either zero

or one. Weighting proceeds normally, except that after

the computation of the weight, any nonzero weight is

set to 1.

PRNVEC causes the vectors to be printed for each document in

the system. If concon or hierarchy expansions were

specified, two printouts of vectors are made, one before

and one after the expansion. In each printout the source

of each concept and weight is shewn in detail.

3*6. Request-Document Correlation

Once the final set of vectors is formed, the request vectors are

correlated against the document vectors. The documents with high correla

tions are considered to be the computer-generated "answers" to the queries.

These may now be printed. They can also be compared with a set of "relevant"

documents, obtained from some other source. SMART can automatically compare

the relevant documents with its answers, and evaluate the performance of

the computer system against the outside standard.

18

The specifications which control this process are:

MDDERD a the correlation mode used for the request-document

correlation is taken as the cosine mode or overlap

mode, according as a is "COS" or "OVLAP" respectively*

Cosine is the normal mode;

CUTRD x the cutoff for request-document correlation is taken

asx, a number between 0.0 and 1.0. Woznal setting is

0.35;

ANSWER a SMART can print out the answers to requests in three

formats. If a is "SHDRT" twelve-character identifiers

are used for both requests and documents. If a is

"MEDIUM", the full text of the request is used, and one

line is used for the document identifier* If a is "LONG"

the complete request and the complete document citations

are printed for each answer* These formats assume, of

course, that the necessary information is supplied with

each document at read-in time (^.1);

SCORES this specification causes the automatic evaluation procedure

to be performed. A list of relevant documents must be

provided, according to the format described in (^A).

The output provided by the SCORES specification includes the following:

a) for each request, the fifteen documents with the highest

correlations, and the values of those correlations;

b) for each request, the relevant documents, their ranks in the

correlation list, and their correlations;

c) for each request, the normalized and un-normalized recall and

precision measures;

d) the averages of the recall and precision measures aver all of

the requests used in this computer run;

n-19

e) a deck of the rank lists for each request, punched in the

correct format for the MORVAL evaluation program (part 6.2).

3*7* Document-Document Expansion

After performing the initial request-document correlation, it is

possible to augment the list of answers through a correlation of the

documents with each other. Documents which exhibit a high correlation

with documents already identified as "answers" can thus be retrieved.

The specifications used in this process are:

DOCDOC this specification indicates that a document-document

correlation is to be performed;

MODEDD a selects the correlation mode for document-document

correlation as COS or OVLAP; COS is the normal mode;

CUTDD x sets the cutoff for document-document correlation to

x, a number between 0.0 and 1.0. The normal value is

0.5*

3*8. Other Specifications

DOCTAP this specification indicates that looked-up documents

appear on tape P£, in the format prepared by the MACTAP

program (part 5*2). These documents will be read by the

SMART programs, and are used as if they were included

in the normal input tape;

AONE n this specification sets the SMART tape AONB to FORTRAN

logical tape number n. Normally n • 1;

ATWO, ..., BSIX

these specifications change the other tape specifications.

Normal settings are shown in Table 1;

AGAIN this specification indicates that another set of

specifications follows this run on the input tape. SMART

11-20

proceeds to the next set after finishing the present run,

instead of returning control to the monitor system;

PAGE n this specification sets the initial page number to n.

The normal setting is n « 1;

STOP

or X these synonymous specifications both indicate the end of

the specification list* One of the two should be the last

specification on the input cards; neither should occur any

where else in the specification list.

A summary of the specifications is given in Table 2.

k. Data Input

After the specifications are submitted, the user must provide the data

for the retrieval processing* This consists of requests, documents, and

relevance judgments, in a typical run. They .may be introduced in either

English or in looked-up binary form, and documents may be introduced on

A2, A6 or both.

Documents are divided into three categories, the requests, the texts

(documents to be searched), and requests which are also texts. This last

category consists of documents to be used as search requests, but which amy

also appear as answers to other search requests (normally, requests may not

appear as answers to other requests). The last named document type might

occur if a user has identified one document in his field of interest and

wishes to see more documents on the same subject. All of these types may

occur in natural language; in binary form, or both.

U.l. Natural Language Documents

Natural language input must be submitted before binary-form documents.

n-2i

SMART
Name

AONE

ATWO

ATHREE

AFOUR

AFIVE

ASK

ASEVEN

AEIGHT

BONE

BTWO

BTHREE

BPOUR

BJTVE

BSK

Normal
Logical
Unit

1

5

6

k

9

U

12

13

8

2

3

7

10

16

Harvard JMB
fhysical Tape
Unit

Al

A2

A3

A4

A5

A6

A7

A8

Bl

B2

B3

B̂

B5

Bo

use

Fortran monitor system tape

' Monitor input tape - card input

Monitor print tape - printed output

Scratch tape - document identifications

Scratch tape - document concept vectors

Document input

Scratch tape - used for sorting

Scratch tape - used for sorting

Scratch tape - vectors for expansion

Scratch tape - correlations

Program chain tape

Monitor punch tape - card output

Library - thesaurus, phrases,hierarchy

Scratch tape - used for sorting

Smart Tape Assignments

. Table 1

The only incompatibility with normal FMS operation is that B3 is not
available as a scratch tape* This prevents compilations or assemblies
when the program tape is used*

11-22

Specification

ENGTXT

NOTFND

PUNCH

STATPR

SYNTAX

. NDDBCO

SYNANA

CONCON

MDDECC

M0DE2C

CUTCC

CUT2C

CONMEN

CONMAX

I

Value

n

COS
OVLAP

COS
OVLAP

X

X

n

n

Meaning

Print texts of English input

Print words not found during
the dictionary lookup

Punch out looked up documents
in binary deck format

Look up text for statistical
phrases as veil as word stems

Search for criterion trees in
text

Print out details of criterion
trees found

Print syntactic analysis of
sentences analyzed

Perform concept-concept
correlations,iterating n times

Choose mode of concept-concept
correlation, cosine or overlap,
(first iteration)

Choose mode of later concept-
concept correlations

Set cutoff for first concept-
concept correlations to x

Set cutoff for further concept-
concept correlations to x

Do not include in the concept-
concept correlations any
concept numbers below n

Do not correlate in concept-
concept correlations concept
numbers above n

Nonnal
Value

off

off

off

off

off

off

off

off

cos

COS

0.60

0.50

0

32000

Summary of Specifications

Table 2

II

Specification

EXPAND

HIER

PCOCOR

LOGVEC

STEMWT

STATWT

SYNWT

OOCOWT

ROOWT

BRANWT

Value

REQS
DOCS
ALL

EXPAND
SHRINK

X

X

X

X

X

X

Meaning

In concept-concept or
hierarchical expansions,
expand the requests only, or
the documents only, or expand
everything

Perform a hierarchical
alteration of concept vectors,
either expanding them, or
"shrinking" them (replacing
the original concepts instead
of augmenting them)

Print the concept-concept cor
relations

Do not compute any weights;
non-zero weights are taken
as 1

x is the weight of the
concepts derived from word
stems

x is the weight attached to
concepts derived from statis
tical phrases (note: all
weights are relative; Usually
STEMWT is left at 1.0, and
other weights varied)

x is the weight attached to
concepts derived from
syntactic phrases

x is the weight attached to
concepts derived from concept-
concept expansions

x is the weight attached to
concepts derived from hierar
chical expansion by parents

x is the weight attached to
concepts derived from hierar
chical expansion by brothers

Normal
Value

ALL

off

off

off

1.0

0.0

0.0

0.0

0.0

0.0

Table 2 (continued)

n-aU

Specification

LEAFWT

CROSWT

BODYWT

TITLWT

FRNVEC

MDDERD

CUTRD

ANSWER

DOCDOC

MODEDD

1 1

Value

X

X

X

X

COS
OVLAP

X

SHORT
MEDIUM
LONG

COS
OVLAP

Meaning

x is the weight attached to
concepts derived from hierar
chical expansion by sons

x is the weight attached to
concepts derived from hierar
chical expansion by cross-
references

x is the weight attached to
concepts derived from the
body of the text (usually
left at 1.0, unless only
titles are to be processed,
in which case set to 0.0)

x is the weight attached to
concepts derived from the
title of the text

Concept vectors are printed
for all requests and docu
ments

Choose mode of request-docu
ment correlation

The cutoff for request-docu
ment correlation is set to
X

The answers to the requests
are printed in a condensed
format, a moderately detailed
format, or an expanded format,
respectively

The list of answers is
expanded through document-
document correlation

The mode of document-document
correlation is set to cosine
or overlap respectively

Normal
Value

0.0

0.0

1.0

1.0

off

COS

0.35

Off

off

COS

— —*

Table 2 (continued)

Specification

CUTDD

AONE

ATWO
• • •
BSEC

DOCTAP

SCORES

AGAIN

STOP
X

Value

X

n

n

n

Meaning

The cutoff for document-
document correlation is set
to x

SMART tape AONE is set to
logical tape n

SMART tapes ATWO, ... AEIGHT,
BONE, ..., BSIX are set to
logical units as specified
(see Table 1)

Documents are read from ASIX
in binary form, as well as
from A2.

An automatic evaluation is
performed

Another set of specifications
is read and processed after
this run

End of specification list;
same as STOP

Normal
Value

0.50

1

off

off

off

Table 2 (continued)

11-26

Within the natural language documents pure requests mist be submitted

first, requests which are also texts next, and texts last.

Each document is preceded by an identifying card containing a *

in column 1, a four character control word In cols 2-5, a blank in

column 6, and a twelve character identifier in cols 7-18. Comments

and identification are punched in 19-72, as desired. The control word

is FIND for a pure request, LIKE for a request that is also a text, and

TEXT for a pure text* The document follows the identifying card (the

card with the asterisk in column 1) and continues on as many cards as

are needed.

Basically, input text to SMART resembles typescript. For example,

text may be punched anywhere in columns 1-72 of any number of cards. Any

number of consecutive blanks are equivalent to one blank* A blank is

assumed between column 72 of one card and column 1 of the next card*

The major differences from typescript are as follows:

...
a) An asterisk (*) in column 1, or two consecutive dollar signs

anywhere ($$) are end-of-text signals* These indicators should

not be used unless an end-of-text occurs* Normally, the end of

a text is indicated only by the * in column 1 of the control

card beginning the next text*

b) Periods not preceded by blanks are taken to be parts of

abbreviations. Thus, a period meant to indicate the end of

a sentence should be preceded by a blank.

c) SMART provides for the inclusion of up to 355 characters of

identification for each text. This is used in the ANSWER LONG

output option (see part 3.6). This identification should be

punched at the beginning of the text on cards with a single $

in column 1* If a text begins with cards that contain a $

11-27

in column .1, SMART and all auxiliary programs ignore their

contents, except that the first five (or fewer) such cards

cure collected as BCD identification. Usually, this consists

of the title, author, and publication source of the document.

The text proper is assumed to begin on the first card without

a $ in column 1, and any further cards with $ in column 1 are

treated as normal text. The identification may be omitted;

in this case, the first card of the text must not have a $

in column 1.

d) The convention used to hyphenate a word between two cards is

to place a minus sign (ll-punch) followed by a blank at the

end of the first part of the word. SMART ignores the

remainder of the card, throws away the minus sign, and

continues from column 1 of the next card. For example, hyphen

ate is properly hyphenated. Note that this rule makes the

following construction illegal: "sub- and super-scripts." Also,

note that "normally hyphenated words which are broken between

two lines at the hyphen must have a double minus sign to

be properly recognized by the input programs; thus, Runge—

Kutta. Hyphenated words in the middle of a line are typed

normally; thus, Runge-Kutta.

e) Hardware restrictions require that only upper-case letters be

used. Special characters are treated as follows:

? .QUE (preceded by a space),

I .EP (preceded by a space),
II / (for both open and closed quotes. There should be

no space before a close quote or after an open
quote; similarly, parentheses and commas axe spaced
normally),

-DASH (ll-punch minus sign followed by the word DASH,
if a dash is meant; for hyphens see d) above),

• t (8-4 punch, as in IBM Scientific character set H) ,

; ,. (not preceded by space),

: .. (preceded by space, and ends a sentence).

Any other conventions could also be used, if the dictionaries were

11-28

constructed accordingly; but the foregoing are simple equivalents for

the special characters*

The natural language documents must be on SMART tape ATWD. Bulk

lookups from tape can be performed, however, by giving the specification

ATWO 11 (defining ATWO as physical A6) . In this case no binary documents

can be submitted. Alternatively, ATOO can be defined as 12 (A7) or 13

(A8) in which case binary documents may still be submitted on A6 with a

DOCTAP specification. Tape ATWO should not be moved to A*f, A?, Bl, B2,

or B6; these tapes are used in the lookup*

^.2. Binary Documents

The binary documents are submitted on A2 and/or A6 following the English

documents. If there are any binary documents on A2, they must be preceded

with a card containing *ONLY in cols 1-5 and a blank in column 6.

As in the case of English documents, the pure requests are submitted

first, followed by requests which are also texts, and finally .concluding

with the pure texts. The documents are preceded by *FIND, *LIKE, and

*TEXT cards exactly as in part 4.1. The *ONLY card suffices to distinguish

them from English documents. The binary cards which make up each document

contain the identification punched at the beginning of the text, and the

concept vectors obtained at lookup time. These documents are punched by

the PUNCH specification, after the lookup. Thus, when binary documents

only are being submitted, the library tape need not be mounted unless

hierarchical expansion is required. The binary documents may be used

with any title or phrase weighting (if STATPR was in effect at lookup

time), and with any expansion options. If it is desired to change the

11-29

thesaurus or phrase list, documents must be looked up again. The punched-

out decks include the appropriate •FIHD, *LIKE or •TEXT card.

4.3. DOCTAPS

If the DOCTAP specification is given a tape of binary documents

should be mounted on A6. This tape contains documents looked up in an

earlier run, as is true also of the documents which follow the *ONLY

card on A2. The tape on A6 is in a different, more compact, format,

however, which is written by the program MACTAP (6.2) from the binary

cards. The tape may contain several sets of looked-up documents* To

select the set to be used, a *FILB card should be provided. The •FILE

card contains •FILE in columns 1-?, a blank in column 6, and either an

integer or an alphabetical file name in columns 7-18. If a file name is

provided, the set of binary documents identified with that name on the

•NAME card produced when the tape was written (part 6.2) is read from A6.

If the integer n (punched anywhere in the field) is provided, the nth file

is read. If no •FILE card is provided, the physically first file on A£

is used. The •FILE card is placed on A2 following the specifications, but

preceding the *STOP card and the *ONLY card (if there is one). The •FILE

card must not appear in the middle of an English document, however, nor

between a •TEXT, •FIND, or •LUCE card and the following document.

k.k. Relevance Judgment Data

After all documents are read, the next input card must have •STOP in

cols 1-5 and a blank in column 6. This card must occur exactly once on

A2 for each set of instructions, following all English and binary documents

(if any). It must also occur at the end of each set of documents on A6.

n-30

Following the *STOP card, the relevant document data needed for the

automatic evaluation system must be submitted, if SCORES is specified.

If SCOPES is not specified, relevant documents are omitted. The cards

containing the relevance data are preceded and followed by a card with

*RELS in columns 1-5 and a blank in column 6. For each request, a card

is punched with the request identifier in cols 1-12, and the number of

relevant documents in cols 13-16, right adjusted. This card is followed

by a set of cards specifying the relevant documents. Each relevant

document identifier is punched in cols 1-12 of a separate card. Columns

13-15 should be left blank, as these are reserved for a future extension

of the evaluation program to include degrees of relevance.

Relevance judgment data may be placed on either A2 or A6. If

relevance judgments are given, they must occur as one continuous deck of

cards, surrounded by *REL& cards, placed after the *ST0P card. Exactly

one set of relevance judgments should be supplied for each request

(i.e., documents preceded by *FIND or *LIKE cards). These relevance

judgments may be on either tape, in any order. All document and request

identifiers, however, must be spelled in exactly the same way on the

relevance judgment cards as on the *FIND, *LIKE, and *TEXT cards. Relevance

judgments may be placed on A6, whether or not SCORES is requested when the

tape is read, but if SCORES is not specified and AGAIN is specified, there

should be no relevance judgments on A2.

t«5 Other Instruction Cards

To place comments on the print tape, the *N0TE card is used. This

card contains a *NOTE in columns 1-5, blank in column 6, and comments

to be printed and ignored in columns 6-72. Printing is done off-line.

n-3i

To determine the time taken "by a program run, a card with *TIME

in columns 1-5 and a blank in column 6 is placed on A2. When this

card is read, the elapsed time is printed. The printer clock (IBM RPQ

78051*) is required if the timing printout is to operate.

A list of all the SMART instruction cards with a * in column 1 is

given in Table 3.

5. Tape Preparation Programs

SMART retrieval runs make use of a set of pre-written tapes, to

avoid inconveniently ljarge input decks. There is no loss of flexibility

or capacity in the use of tapes. Up to three special tapes are used: the

library tape, the document tape, and the program tape.

The program tape contains the binary programs used by the SMART system.

It is mounted on B3. The document tape, on A6, contains looked-up

document collections to be processed. The library tape, which goes on B5,

contains the thesaurus, phrase dictionaries, granmar, and hierarchy.

5.1. Writing a New Library Tape

The library tape contains six files. These are the thesaurus, the

statistical phrase list, the syntactic suffix list, the English grammar,

the criterion trees (syntactic phrase list), and the hierarchy. A set of

programs in two chain links (numbered 101 and 102) is used to write a

library tape. The programs in link 101 update the thesaurus file; the

programs in link 102 write the remainder of the tape. Link 101 auto

matically calls link 102. The programmer may omit link 102, however, if

nothing but a thesaurus is desired on the library tape (this is usually

the case with null dictionaries).

32

Cols 1-6

*FIND

•LIKE

•TEXT

*STOP

*RELS

•NOTE

*TIME

*ONLY

•PILE

Cols 7-18

Request name

Document name

Document name

Anything

Anything

Anything

Anything

Anything

Collection
name or
integer

Meaning

Precedes a pure request for the
system

Precedes a text which is also a
request; i.e., a document "which
is both searched for and searched
on

Precedes a pure text, i.e. a
document which is only searched
for

End of documents submitted on this
tape

Precedes and follows deck of
relevance judgments

Comments

Finds out the time

Indicates end of English language
documents and beginning of binary
documents

Identifies which collection of
documents on A6 is to be read in
to the system

SMART Instruction Cards

Table 3

11-33

The new library tape is written on B5. If an old tape is being

updated, it is placed on A6. New data is submitted on cards, on A2,

except for a new grammar, which is presented as a tape on A5»

5.1.1. Thesaurus and Suffix List Formation

The thesaurus is the first file on B5 to be written* It contains a

suffix list used in the lookup, followed by the thesaurus records themselves*

The thesaurus and the suffix list may be introduced from cards (on A2), or

from an older library tape on A6*

The first data card for the update programs specifies whether the

thesaurus and suffix list are on A2 or A6* This card contains a word,
»

left-adjusted in columns 1-6, and followed by trailing blanks until column

7, which identifies those data which are on tape A2. If this word is BOTH,

the thesaurus and suffix list are assumed to be on A2, and tape A6 is not

read* If it is desired to skip over (without reading) a thesaurus file on

the old library tape, columns 7*12 of the BOTH card should contain the

word SPACE followed by a blank* If the suffix list is being submitted on

cards, while the thesaurus is to be copied from A6, columns 1-6 of the

first card should contain the word SUFFIX. The word THES identifies the

thesaurus as being on cards, while the suffix list is taken from the old

tape. If both the thesaurus and the suffix list are on the old library

tape, COPY is given as the control word*

If the first data card contains either SUFFIX or BOTH, the next data

deck must be the suffix list* Each suffix is punched on a separate card,

beginning in column 1, and followed by blanks. Each suffix should be

assigned a distinct sequence number, less than 256, which is punched

rigjit-adjusted in columns 13-15 • The suffix list ends with a card con-

II-31*

taining ZZZZZZ in columns 1-6. The suffix list may appear in any order,

provided that the first suffix begins with "e".

If the thesaurus is introduced from cards (control word BOTH or THES),

it follows the suffix list (if any) immediately. If there is no suffix

list, it follows the first data card. The thesaurus may contain any number

of words. Each word is punched on a separate card. Since a suffixing

routine is available, only the word steins should be entered in the dictio

nary. The suffixing routine will accept multiple suffixes, and also

recognizes that words may double their final consonant, change a final "y"

to an "i", or drop a final "e" before adding a suffix [7]. This permits a

highly accurate lookup in which almost all derivatives of most English

words can be identified automatically [12]. Of course, the extremely

variant forms (such as "mice", "geese", etc.) must be entered in the dictio

nary as separate words. It is sometimes necessary to enter complete forms

of words to preserve important distinctions. For example, "programmer"

is readily identified from "program" + "m" + "er", but if it is desired

to distinguish a programmer from a program, both forms should be entered.

The dictionary lookup procedure may always be used as a full paradigm

dictionary by entering every form of a word in the thesaurus, at the

expense of a great deal of keypunching. Words entered explicitly take

precedence in the lookup over possible stem-and-suffix combinations.

Each stem to be entered in the dictionary is punched left-adjusted

in columns 1-2^ of a card, with trailing blanks.

With each word are associated between one and six concept numbers.

These are punched right-adjusted in five column fields, starting in

column 25 and extending to 5*t« Ike first concept number is punched in

11-35

25-29, the next in 3P-&, then in 35-39, and so on. If there are less

than six concept numbers, the remaining fields should be left blank*

No concept number should exceed 32767. Concept numbers above 32000

(and the concept number o) are reserved for non-significant words. The

concept numbers 1-32000 are significant concepts, used in correlation

process.

Up to eight syntactic codes may also be punched for each stem. They

are punched in columns 55-78 in three-column numeric fields, right adjusted

within each field but using the leftmost columns first. Each syntactic

code is a number, less than 256. As currently implemented, these numbers

correspond to partial stem homographs for the Kuno syntactic analyzer.

The correspondence between syntactic code numbers and partial homographs

is shown in Table k. The homograph is completed by combining the partial

stem homograph with the partial suffix homograph of the syntactic suffix

list (5*3*1) as explained in [13]*

The word stems on the input cards should he in correct BCD alphabetical

order. They must be correctly ordered by the first letter, as the programs

are currently arranged: the degree of order necessary depends on the size

of the dictionary. Bie thesaurus must end with a card containing a 0-5-8

multipunch in column 1, and *END* in cols 2-6.

5.1.2. Statistical Phrase Dictionary

The second file on the library tape contains the first of the phrase

dictionaries, the statistical phrase dictionary. The first card of the

statistical phrase deck (following the last card of the thesaurus update

section) is a control card specifying the use to be made of the old file

on tape A6. Columns 1-6 of this card should be either KEFLAC, indicating

11-36

l
2
3
k
5
6
7

ADJ
ADK
ADL
ADM
ADN
AD0
ADP

8 ART
9 AUXC
10 AUXP

11 AUXS
12 AVI
13 AV2
Ik AV3
15 AVU
16 AV5
17 AV6
18 AV7
19 AV8
20 BBOP

100 VHP
101 III
102 VI1S
103 VI1C
10U PI1
105 0I1S
106 RI1
107
108
109

160 VT4P
161 IT^
162 VT^S
163 VT4C
l6U PT^
165 GT^S
166 *T4
167
168
169

21 BEOS
22 BEOY
23 BGOS
Sk BID
25 BPO
26 BRO
27 CC0
28 en-
29 CMA
30 C01
31 C02
32 C03
33 001*
3^ C05
35 006
36 C07
37 C08
38 CPR
39 001
ko 0110
110 VT2P
111 112
112 VI2S
113 VI2C
13* PI2
115 GI1S
116 RI1
117
118
119
170 VT5P
171 IT5
172 VT5S
173 VT5C
17^ PT5
175 GT5S
176 RT5
177
178
179

kl 0120
k2 0130
43 OT10
kk 0T20
k5 0T30
1*6 OT^O

k-J 0T50
U8 0T60
49 OT601
50 0T70

51 0T701
52 HAVC
53 HAVP
5k HAVS
55 HP1
56 HP3
57 HP^
58 HP5
59 HPP
60 HVGS

120 VI3P
121 113
122 VI3S
123 VI3C
12fc PI3
125 GI3S
126 RI1
127
128
129
180 VT6P
181 n6
182 VT6S
183 VT6c
i8h PT6
185 GT6S
186 RT6
187
188
189

61 HVI
62 HVP
63 IAD
6k IAV
65 IPN
66 IP0
67 NAD
68 N04C
69 N0^S
70 N0UO
71 N0VO
72 NUMO
73 PRD
Jk PRE
75 PRNC
76 PRNP
77 PRNS
78 PR0
79 PRZC
80 PRZP

130 VT1P
131 IT1
132 VT1S
133 VT1C
13^ PT1
135 GT1S
136 RT1
137
138
139
190 VT6P1
191 IT6 1
192 VT6S1
193 VT6C1
19^ PT6 1
195 GT^Sl
196 RT6 1
197
198
199

81 QUE
82 RL1
83 RL2
&k RL3
85 RlA-
86 RL5
87 RL6
88 TITS
89 T0IS
90 XC0

91 YC0
92 N0US
93 VT1P
Sk VI1P
95 N0UP
96 N0UC
97
98
99

lUo VT2P
1U1 n 2
1U2 VT2S
lk3 VT2C
l l ^ pi2
1^5 GT2S
146 RT2
11*7
lk6
1U9

200 VT7P
201 EP7
202 VT7S
203 VT7C
20^ PT7
205 GT7S
206 RT7
207
208
209

150 VT3P
151 IT3
152 VT3S
153 VT3C
15^ PT3
155 GT3S
156 RT3
157
158
159
210 VT7P1
211 IT7 1
212 VT7S1
213 VT7C1
214 PT7 1
215 GT7S1
216 RT7 1

Partial Stem Homographs
(See Mathematical Linguistics and Automatic
Translation, Report No. HSP-9, Vol. I)

Table k

Note: Slashed 0 stands for letter "Oh";
Normal 0 stands for numeral zero.

n-37

that new cards on A2 replace the old file on A6 which is skipped, or

IGNORE, indicating that new cards are on A2 and tape A6 is to be ignored,

or COPY, indicating that the old phrase dictionary on AS is to be copied

unchanged to B5-

If REPLAC or IGNORE are specified, the control card must be followed

by the cards for the phrase dictionary. Each phrase is punched on a

separate card. The concept number of the entire phrase is punched right-

adjusted in columns 1-5* The component concept numbers are punched right-

adjusted in six-column fields, using the leftmost fields first. Thus, the

first component goes in columns 6-U, the next in 12-17, the third component

(if any) in 18-23, and so on.

Statistical phrases must have two components, and may have up to six..

Non-significant concept numbers may be used; for example, one could find

the phrase "exclusive or" by searching for the components "exclusive" and

"or" even if "or" had a non-significant number (as it usually does).

The statistical phrase dictionary may be in any order, but the last

card mast contain N0M3R in columns 1-5 and a blank in column 6.

5.1*3. Syntactic Suffix List

The second file on the library tape contains the partial homograph

codes associated with the suffixes. One control card is required by the

library update programs; it contains one of four codes in column 1-5 •

The possible codes and their meaning are:

(ORIG A deck of suffix cards follows in the format described

below. Generate a file of these suffixes, ignoring tape A6.

(DUFL The file on A6 is copied unchanged to B5* No other cards

11-38

axe submitted for this file.

(MERG Merge the new suffixes which follow with the old list*

(SKIP Same function as (ORIG, except that P£ is spaced over the

old file.

The suffix cards required for the (ORIG, (DUEL, and (MERG options are

punched as follows. Each card contains one suffix identified by its number,

and the list of partial homographs for this suffix. The suffix number

(associated with the suffix by the cards described in part 5-1-1) is punched

anywhere in columns 1-6, and the various possible partial or complete homo

graph codes are punched in six-column alphabetical fields beginning in column

7, using the leftmost fields first.

The partial homographs are alphabetic, with the unneeded characters

replaced by zeros. For example, the Kuno homograph for a plural noun is

IWUP. A noun stem, in the SMART dictionary, is given the syntactic code

number 70, corresponding to N0UO (note as before that 0 is "zero11 while 0

is the fifteenth letter of the alphabet). The suffix "s" has a partial

homograph OOOPO. When stem and stiffix are combined, the complete homograph

N0UP is formed. The stem RECTI, to take another example, has the syntax

number 0^3, which corresponds to 0T10. When combined with the suffix PIED,

which has the suffix homograph VOOC (among others), a correct homograph

VT1C is obtained for RECTIFIED. The remaining homographs are obtained ftom

the other suffix homographs; they are ADJ (obtained completely from the

suffix) and PT1 (0T10 + POO 0 = PT1) •

The partial homographs of some sample suffixes are shown in Table 5«

5.1.^. The Condensed Grammar File

The condensed grammar file follows the syntactic suffix list on the

11-39

Suffix

ED

S

ES

LY

ING

Y

ION

IONS

OUS

ER

EST

ENT

ERS

ABILITIES

Homographs

VOOCO POO 0 ADJ NOVC

NOUP VOOSO

NOUP VOOSO

ADJ AVI

ROO 0 GOOSO NOVS ADJ

NOVS ADJ

NOUS

NOUP

ADJ NOVC

NOVS ADK AV6

ADJ NOVC

ADJ NOVC

NOUP

NOUP

1

Some Partial Suffix Homographs

Table 5

Il-k)

library tape. It is used by the Kuno multiple-path syntactic analyzer.

This analyzer is discussed in [9]. The grammar tape itself is not actually

written by any program in the SMART package; a tape containing the grammar

is prepared by the analyzer programs operating independently. This tape

is then copied onto the SMAJtT library tape.

The card following the syntactic phrase list directs the tape copy.

If it begins with CDPYA5 in columns 1-6, a new grammar tape on A5 replaces

the old grammar. If it begins with C0PYA6, the old grammar is used. If

UFDTA5 appears in cols 1-6, a new grammar is copied from A5 and the old

grammar is skipped on A6.

Tl}e SMART programs have been run with a grammar modified to accept

noun phrases and prepositional phrases, nils permits the syntactic analysis

of titles [l^]. However, as noted above, the syntactic analysis routines

are generally in disuse because of timing problems, since the new, faster

analyzer is not yet available.

5.1.5• The Criterion Tree File

Bie fifth file of the library tape consists of the criterion trees, a

phrase dictionary in which phrases are defined by a complete set of structural/

semantic/syntactic specifications. The overall control cards recognized by

the update editing criterion tree routine are:

/COPY" in columns 1-5 > with an optional integer beginning in column 7*

The indicated number of trees are copied ftom A6 to B5- If no

number is given, the whole criterion tree file is copied.

/SKIP in columns 1-5, with an optional integer beginning in column 7*

The indicated number of trees on A6 are skipped (if no number is

given, the whole file is skipped).

IL-hl

/EDIT in columns 1-5, with an optional integer beginning in column

7* The indicated number of trees are copied from A6 to B5

with the trees specified by the deletion requests (which follow

this card) removed from the file. These deletion requests are

cards with right parentheses in columns 1 and 2, and with a

serial number in columns 7-12 and/or a BCD identifier in

columns 13-18. Up to 30 of these delete requests may be given.

Any criterion tree on the tape which matches the information

on the delete card (either the identifier or the serial number,

if only one is specified, or both the identifier and the serial

number if both are given on the delete card) is removed from

the file.

/WEOF in columns 1-5* This terminates the processing of the criterion

trees. The file on B5 is terminated and A6 is spaced over any

remaining trees. This should be the last control card affecting

the criterion trees.

/ADDL This specification causes trees to be read from A2, encoded as

required by the search programs, and written on B5» The format

required for the specification of criterion trees is given below.

5«1«5«1* Criterion Tree Input Format

Each definition begins on a new card. Basically, six pieces of infor

mation are required to define a criterion tree. These are:

a) the tree name and serial number,

b) the output concept numbers to be assigned to the sentence if

the tree is found,

c) the place in the sentence where these concepts are attached,

d) the dependency relations between nodes (the structure of the

tree),

e) the syntactic values associated with each node that must be

matched,

11-42

f) the semantic values associated with each node, which must be

matched.

Normally, the data under c), d) and e) are supplied by reference to

a standard "tree type". A table of tree "types" exists in the program,

represented in Table 6. New types may be defined, however* Trees may also

be defined completely on the input cards. In fact, one may simultaneously

define both trees and types with an input card. Usually, however, only

the output concept number, the semantic data, the tree type, and the name

and serial number are assigned by the user. The format of the criterion

tree input cards, going from left to right, is as follows:

a) columns 1-6 contain six BCD characters. If this is the first

card of a tree, this field contains the name of the tree. This

is the BCD identifier used in the /EDIT control card. If this

field contains five blanks followed by an asterisk, this card

is a continuation card frcm the preceding card. Column 1 should

not contain a /, except for the last input card of the criterion

tree deck, which must contain ////// in cols 1-6.

If a type, rather than a tree, is being defined, the BCD name

field is ignored. However, it must be non-blank, non-zero,

and satisfy all the other requirements as usual.

b) the output concept number field(s) follow. This may be emitted

if a type only, and no trees, are being defined. The contents

of this field are the concept numbers to be used as output, and

the positions in the sentence (the nodes) where they are to be

inserted. More than one output concept number field is allowed;

each field, including the first output concept number field,

must be preceded by an equals sign (=). Each field is defined

as follows:

i) if the output concept number is a specific integer, it must be

I I

1. 1?*
2-6

(V)

^cJ(0, s)]b (0)

, ^ o (c)

'< v)

6. 2 Q *

l6

i6w)

:r

8.

10 3Q
2a i,r ^ (v)

11 .

KX (s)
k\>(5)

\
26

12

13- /°^<0>
/a (0, 3) sbw)

Standard Tree Types

Table 6

Solid lines indicate direct dependence; dotted lines indicate indirect
dependence. The asterisk denotes "key" nodes; i.e» the nodes to which
the output concept number is attached when a match is founds

II-W^

first in the field, and only one such integer is allowed.

For example, to specify 285 as the output concept number,

one writes * 285 for the output concept number field;

ii) if no definite integer is given, at least one subfield

consisting of the letter "N" followed by an integer must

appear. Each such integer identifies a node in the tree

whose concept number is used as an output concept number.

No nodes numbered above 15 may be referred to in this way;

iii) normally, a pre-assigned "key" node in the tree receives

the output concept number. In Table 6 this key node is

marked with a * for each type. If the user wishes to

assign the output concept number to another node or nodes

he may do so by punching a period followed by the number

of the node to which the concept number is assigned. Any

number of periods followed by integers (the integers must

be smaller than 15) may be punched. A period not followed

by an integer suppresses the weight assignment to the key

node. For example, if it is desired to change the assignment

from the key node to node number 3, the user would punch .3.

in this subfield;

iv) normally, the output concept numbers are given equal weights,

assigned in such a way that the total weights of each phrase

are equal. If SYNWT 1.0 is specified, the total weight of

each phrase will be equal to the weight of one word occur

rence (assuming the normal STEM/T 1.0). However, the user

may punch a subfield consisting of an asterisk followed by an

integer. The output concept number of this field will then

be assigned a weight specified by this integer. The integer

may be zero; it must be less than seven. Normally, weighting

with one output concept nuriber per phrase corresponds to an

integer specification of k. To halve the weights, specify 35

to double them, 6; and to triple them, 7- A zero specification

eliminates this phrase*

n-^5

Thus, to define an output concept number of 285, and to attach it

to node number 3 instead of the keynode, and also to double its

weight, the user punches «285«3»*6 as an output concept number

field. If, in addition, the concept number on node 2 is to be

moved onto nodes h and 5 with half weight, another output concept

number field would be added, the total reading:

*285.3**6«N2.4.5-*3

c) it is also necessary to supply the conditions specified for

each node. For each node exactly one node condition field exists,

except that conditions need not be specified for the last node

(and adjacent nodes) if a definition using a tree type is employed,

and the syntactic and structural criteria supplied by the type are

all that is needed for these trailing nodes.

The first node condition field begins immediately after the output

concept number fields* Each node condition field is followed by

a slash, (/) except for the last node condition field which is

followed by a dollar sign ($). If the tree is being defined

according to a standard type, only the semantic information need

- be supplied in the node condition fields. If a type is being

defined, however, or if a tree is being defined without the use of

a type, all information must be supplied for each node. In this

case, there must be exactly as many node condition fields as there

are nodes in the final tree.

If structural data is being specified, all but exactly one node

condition field should begin with either an I or a D followed by

an integer. The node whose condition field does not begin with

an I or D is taken as the root of the criterion tree. A node whose

condition field begins with "In" must match a node whidh is

descended from (direct or indirect ancestor) the correspondent of

node number n. A node whose condition field begins with "Dn,f

must match a node which is the direct (first-generation) descendant

of the node which matches node n. "Descend" is understood in the

11-46

sense of "being syntactically dependent upon, according to the

syntactic analysis used for this sentence/1

The semantic (and syntactic, if needed) data now follow; or, if

this tree is being defined using a standard tree type, these data

begin the field. The node condition field, except for the In

or Dn subfield, is composed of a set of "relations", each "relation"

being a set of one or more "relation generators". Each relation

generator is either a concept number or a syntactic role code.

A concept number, indicating a semantic condition, is punched as an

explicit integer. A syntactic role code, indicating a syntactic

condition, is punched as a letter enclosed by apostrophes. Thus,

the relation generator for concept number 285 is simply 285;

the relation generator for a verb is 'V. The syntactic role

codes and their meanings are shown in Table 7. If a tree node

is to match a sentence node, at least one relation generator in

each relation must correspond to a property of the word. Relation

generators are punched separately by commas, and all the relation

generators in each relation are enclosed with parentheses. For

example, the node condition field I3(8,l6)(t0',tS') can only match

a word which:

i) depends directly or indirectly on the word matching node

number 3;

ii) corresponds to either concept number 8 or concept number

16 in the thesaurus;

iii) functions either as an object or a subject in the

sentence.

On the other hand, the condition field <8)(l6) would only match

a word which would correspond to both concept 8 and concept 16 in

the thesaurus*

The node condition fields correspond to nodes in sequence counting

ffcm left to rigfct. Thus, the node condition fields

(26,78)/(95)/(22,105) indicate that node 1 must match a word in

concept 26 or 78; node 2 must match a word in concept 95; and node

Letter

1

2

3

k

5

6

7

8

A

C

D

E

G

M

0

P

R

S

V

X

+

9

0

s

Meaning

Declarative sentence

Interrogative sentence

Imperative sentence

Subject clause

Object clause

Complement clause

Adjective clause

Adverbial clause

Adjective

Complement

Adverb

Adverbial noun phrase

Gerund

Participle

Object

Hirase

Phrase or clause introducer
(preposition or conjunction)

Subject

Verb

Auxiliary Verb

Conjunction (and/or/but)

Comma

Period

Question mark

Syntactic Role Codes

Table 7

Footnote to Table: see section I of Reference 8, page 127 (Table 25)

3 oust match a word with either concept 22 or 105. The structural

and syntactic data are supplied, as usual, from the tree type to

be specified later.

following the dollar sign ($) ending the node conditions fields,

a final, miscellaneous field appears. This field specifies

whether trees or types are being defined, what types if amy are

being used in the tree definitions, and what the serial number(s)

of the output tree(s) are.

If trees, rather than types, are being defined, the dollar sign

($) is followed with a set of tree specifications, separated by

commas. Each specification consists of a type number, identifying

the standard type which supplies the syntactic and structural data,

and a serial number code. The type number is simply an integer,

identifying the tree in Table 6. It is followed immediately by

the serial number code, which is one of the following:

i) + (plus sign) indicating a serial number one greater

than the last serial number assigned;

ii) * (asterisk) indicating a serial number equal to the last

serial number assigned;

iii) / (slash) followed by an integer, which assigns this

, integer as a serial number.

If the syntactic and structural data are supplied with the tree

definition, instead of from a type, the type number in the tree

specification should be explicitly set to zero. Any number of tree

specifications may be given, separated by commas, to define several

trees at once. For example, one can simultaneously define trees

to represent "information retrieval is ..." and "retrieving

information by ..." in this manner.

If a new type is defined, this last field should end with an

integer followed by either "T" or "P". This declares the structure

and syntactic conditions defined on this code to be a standard

tree type, numbered with the integer provided. This rule applies

n-49

even if the integer was previously in use to identify another

tree; the old tree is lost in this case. If the letter "P" is

used, in addition to specifying a definition valid for this run,

a deck of binary cards is also punched which may later be added to

the deck of the subprogram TRECND in link 102 to permanently alter

the standard tree types. The "T" or "P" should be followed by

a set of integers, separated by commas, which identify the "key"

nodes of the new tree type. Usually there is only one key node.

e) the following additional format requirements should be noted.

Blanks are completely forbidden except in the BCD name field.

The occurrence of a blank ends the definition. To continue a

definition from one card to the next, a minus sign (-) should be

punched as the last non-blank character of the first card, and

the next card should be started with five blanks and an asterisk

in columns 1-6. Punching of the tree definition should be

resumed in column 7.

Consider the following examples. Assume that "information" is

represented by concept Ilk, "data" by 53> "retrieval" 26, and

"information retrieval" is to be defined concept 301. Note that

tree type 1 is : l Q and type 3 is: jCt3

26 (v) i C r O2 (0)

To define tree type 3, one could write:

TTCE3 D3(,VI)/I3(,0,)//$3T1

and to define type 1:

TYEEL /I1$1T1

This tree would match all the following sentences if the appropriate

concept numbers are assigned to the nodes (numbering the trees 10

and 11, and naming them INFKET):

INFRET«30l(26)/(53,ll^)$l/lO,3+

Information retrieval is useful,

Data retrieval is useful,

11-50

They retrieved data by computer techniques,

They retrieved information by computer techniques.

To match "They retrieved information by computer'1 but assign the

output concept 301 to "information" instead of to "retrieved" one

writes

INPRET*301.2*(26)/(53A1^)$3/10

To define tree type 3 and the original tree simultaneously, one

writes

INFRET*301D3('V) (26)/l3(f0f) (53,l^)/$0/lO,3T1

5-1*6. Hierarchy

The hierarchy is punched in a comparatively simple format. Each

concept number is punched on a separate card, and represents a single

node in the hierarchy. Indenting is used to indicate descent in the

hierarchy. More exactly, the "level" of a node is defined as the number

of the column on the IBM card in which the units digit of the concept

number is punched. The parent of each node is defined as the last prece

ding node on a lower level, i.e. with its units digit punched further to

the left. If a node is furnished with cross-references to other nodes,

these are punched on the same card, to the right of the node number. There

may be any number of cross-references, punched anywhere on the card

(separated by blanks). All punching is restricted to columns 1-70. If

additional space is needed, any character may be punched in column 72.

This causes the next card to be interpreted as a continuation card.

It is esthetically pleasing, although not necessary* to punch all

brothers on the same level (in the same columns). For example, the

following structure (with node number 2 cross referenced to node 7 and vice

versa):

II-51

could be punched either as: or as:

1
2 7

k
5

3
6
8

7 2

If the hierarchy consists of several bushes, rather than one connected

tree, bushes are separated by single blank cards. Two consecutive blank

cards end the hierarchy.

5>2. The Document Tape

To avoid the necessity of submitting document collections on cards

for each retrieval run, a prewritten tape of binary documents can be used.

These tapes are written by a program called MACTAP. The control cards for

MACTAP contain asterisks (*) in column 1, and control words left-adjusted

with trailing blanks in columns 2-6. Data cards are submitted on A2 and

the tape is written on A6.

The first data card may be the control card *STAHT. This card is

used if additional data are being added to a previously written document

tape. If it is omitted, it is assumed that a blank tape is mounted on A6.

1
2 7

k
5

3
6
8

7 2

11-52

Any number of sets of documents may be submitted in one run. Each set

of documents is preceded by a *NAME card, which contains a twelve character

identifier in columns 7-l8. This identifier represents the collection

name which is used in the search initiated by the *FELE card (see part U.3).

The documents are submitted on cards, in looked-up form. The order is the

usual: first any pure requests (identified by *FIND cards), then any

combination request/texts (identified by *LIKE cards), and finally texts,

identified by *TEXT cards. A *STOP card follows each set of documents. A

deck of relevance judgments, as in part k-.k, may be placed between *KELS

cards after the *STOP card.

After each set of documents and relevance judgments, another *NAME

card and another document collection may be added. The end of the run is

marked by a *FINISH card.

5-3* The Program Tape

The SMART program tape is a normal FM3 chain tape. To write it, the

links to be included are submitted on binary cards, with a blank tape on B3.

The FMS loader will write a chain tape automatically, which may be saved

and reused.

Currently, SMART has 1^ chain links, as shown in Table 8. Tape-writing

programs operate separately. All links need not be included on the program

tape, but if any links are omitted some options will be unavailable. It is

necessary to resubmit the programs on cards and have the loader write a new

chain tape to make any changes in any of the programs.

6. Auxiliary Programs for Use with the SMART System

Several programs, although not directly a part of the SMART system, are

II

Link No.

1

O
J

3

k

5

6

7

8

9

10

11

12

13

Ik

Function

Lookup in thesaurus and statistical phrase
dictionary.
Printing of English texts

Printing of words not found in thesaurus

Formation of complete homographs (lookup in
syntactic suffix list)

Syntactic analyzer, link 1; formation of binary
sentence tape

Syntactic analyzer, link 2; analysis, formation
of binary analysis tape

Syntactic analyzer, link 3; formation of edited
analysis tape

Criterion tree matching routine; lookup of
syntactic phrases

Vector formation, combining all sources of concept
numbers, weighting of vectors; correlation of
requests against documents

Concept-concept correlation; formation of concept-
concept expansion matrix

Hierarchical and concept-concept expansions;
formation of new document vectors

Document-document correlation, and expansion

Sorting of request-document correlations

Printing of answers to requests

Evaluation of run

SMART Chain Links

Table 8

II-51*

frequently used for auxiliary functions. These are described in the present

section.

6.1. THES

THES is a program to form null dictionaries from a collection of

English text. It also prints out frequency counts and listings as a

by-product. It includes a suffixing routine.

THES requires an A2 one control card. This card contains three

integers. The first integer, punched right-adjusted in columns 1-5,

specifies the maximum number of concepts (words) to be included in the null

dictionary. The second integer, punched right-adjusted in columns 6-10,

specifies the minimum number of occurrences in the collection that any word

in the dictionary may be expected to exhibit. These two numbers pennit the

user to control the size of the null dictionary. For a complete null dictio

nary, the first number should be very large and the second number should be

1. The third number is punched right-adjusted in columns 11-13 *&<* specifies

the tape on which the document collection is located. If this field is

blank, tape 5 (the input tape) is assumed.

The collection is placed on the specified tape in normal SMART format

(4.1), with documents preceded by *TE3CT cards only. *FIND cards, and *LIKE

cards should not be used. Of course, since no searches are made during

thesaurus construction, the requests may be labeled *TEXT, without problems,

if it is desired to include them in the counts. A *ST0P card ends the

collection.

6.2. MDRVAL

M3RVAL is a program to compute additional evaluation data for a set of

11-55

requests and methods* MORVAL accepts as input a set of decks of rank

positions punched by the SCORES specification at run time. The program

produces for each method and each request the top fifteen documents, and

the ranks of the relevant documents* All documents are abbreviated to

three-character identifiers to permit a compact output format* Thus, to

use MDRVAL properly the twelve-character identifiers used for the documents

should be chosen so that the first three of these characters are adequate

to uniquely specify a document* MDRVAL also produces normalized and

unnormalized evaluation measures, and recall-precision graphs of two types

(averaged over requests, and cunmlated-type graphs)* MDRVAL is also capable

of evaluating "merged methods", where the results of several methods are

merged*

MDRVAL is described in reference [15 3, where complete instructions

for using the program are given*

6*3* SOCCER

SOCCER is a concordance generating program. All occurrences of each

word in an input document collection can be listed with their context*

Such a concordance greatly simplifies many tasks of word use analysis*

SOCCER contains full facilities for suppressing concordances on unwanted

words; or restricting the concordance to selected words. It also provides

a variety of statistics about the collection of text processed.

Because of the simpler nature of the processing, SOCCER will function

with virtually any input format for the text. In particular, the SMART

formats are satisfactory, and are convenient for some of the format options

of SOCCER.

SOCCER is a relatively fast program; a concordance prepared for a

11-56

collection of 110,000 words took about forty minutes. SOCCER is fully-

described and complete instructions given for use in [16]. It has

been distributed by SHARE as distribution no. 3*1-07.

7. A Sample Input Deck

Note: Normal typing represents comments; UPPER CASE UNDERLINED

represents BCD input cards; lover case underlined represents binary input

cards.

* JOB,630201,5MIN,5000,LESK

This is the Harvard FMS job card format.

* XEO

Monitor control card.

»• PLEASE MOUNT TAPES ...

* SALTON 25 ON B 3 RING OUT 800 BPI

* SALTON hk ON A6 RING OUT 800 BPI

* PAUSE (THANK YOU)

These cards instruct the operator to mount the program tape, Salton

25, and the document tape, Salton hk.

clchn - two card binary program

This program is equivalent to the compiled version of the Fortran

statement CALL CHAIN (1,3)- It brings in the SMART programs f*am the

program tape.

* DATA

11-57

Monitor control card.

DOCTAP ANSWER SHORT SCORES MODERD COS CUTRD 0.3$ PRNVEC

STATWT 2,0 X

These instructions cause the programs to

a) read input data from a document tape mounted on A6;

b) to print only twelve-character identifiers for the request and

documents when answers are obtained;

c) prepare an automatic evaluation;

d) define the correlation mode for request-document correlation

as the cosine mode;

e) choose the cutoff for request-document correlation as 0.35;

f) print out document and request vectors during the run;

g) weight concepts derived from statistical phrases twice as heavily

as concepts derived from word stems;

h) end the specification list with the X specification.

*FILE ABSTR THES

The file to be read from the document tape is named ABSTR THES. At

input time to MACTAP, this tape looks as follows:

*NAME ABSTR THES

*FIND QA1INF0RM

binary looked up deck for query QA1INF0RM

*FIND QA2

11-58

binary deck for query QA2 ...
• • • «...
• • •

*FIND QB16

a total of 35 questions are placed on the tape

TEXT 01X33C •..

binary deck for the first text, punched when looked up

• • •

*TEXT 82X1106 ...

binary deck for the last text

*STOP

*RELS

QA1INP0RM 10
55XRELEVAOT
23XRELEVANT
...

The relevant documents for the first question are listed

QA2

the request name for the second request and then its relevant

documents are submitted, and so forth.

...

*RELS

*NAME ABSTR NULL

the next set of documents for MACTAP is provided here, after all

relevant documents are introduced for the requests in the first

collection.

•STOP

This card appears on A2. It indicates that no documents were submitted

n-59

on A2, only the set on PJS is to be processed*

end of file

This marks the end of the job for the monitor system. Total cards

submitted: BCD 12, binary 2, total Ik. Most of the production runs made

with SMART are of this size.

8. Miscellaneous

SMART is frequently changed and revised; thus writeups may differ.

The current writeup supersedes the ones included in reports ISR-7 and

ISR-8 completely, and it supersedes report ISR-9 wherever the present

writeup differs from the one in ISR-9* SMART is written in Fortran II

and in FAP. With all its subroutines, the programs include approximately

30,000 souroe cards and 5,000 binary cards.

8.1. Size Limits

The thesaurus may consist of any number of English stems; however,

only 32,000 significant concepts are allowed.

The program can address up to 250,000 documents; however, the capacity

of the intermediate tapes will be exceeded before this point. Assuming

that MACTAP is used to prepare the input document tape, about 25,000-100,000

documents (depending on their length) is a probable practical limit. If

one insists on submitting documents on cards, about 1500-2000 documents is

fl.il will fit. The only truly significant limitation may be expected to be

the fact that only fifty requests can be processed in one computer run.

8.2. Timing

The following timing estimates are approximations derived from our

http://fl.il

11-60

experience on a batch-processing 709^ !• Since SMART is an experimental

system, no great effort was spent on optimizing the object code for speed,

and considerable improvements could be made in many of the programs.

Starting: Mounting two tapes, signing on, reading the specifications,

etc. requires about two minutes. This represents mostly tape mounting time.

Lookup: To look up £ words in a dictionary of g stems takes
-7

roughly pq.10 minutes. Statistical phrase searching of £ words in a list

of g phrases takes about ipq*lo"^ minutes• Syntactic timing is exceedingly

irregular with the old syntactic programs, and is effectively so slow that

nothing useful can be accomplished in a reasonable amount of time. It is

hoped that seme syntactic analysis runs can be performed with a new revised

analyzer to be distributed shortly*

Correlations: To correlate £ requests against q documents and then

sort the correlations, and evaluate, on the order of ipq^lO*"3 minutes are

used up. Present experimental data exist only for the range of £ between 10

and 50, and g between 50 and ^00; these estimates should not be trusted far

outside this range.

Concept-concept correlations: lif £ concepts are involved (i.e. p » CONMAX -
1 2 _lj.

CONMIN) the first correlation takes about £p *10" minutes. Further iterations

should be fast, assinning reasonable cutoffs.

Hierarchy: . Most of the time is spent in tape shuffling, requiring

about five minutes for collections of about 50,000 words.

9« Acknowledgments

The programs described here were written by Mark Cane, Tom Evslin,

Guy Hochgesang, Alan Lemmon, Michael Razar, George Shapiro, and the author.

n-6i

Other members of the SMART project have been Margaret Engel, Claudine Harris,

Richard LeSchack, Edward Nelson, Joseph Rocchio and Edward Sussenguth.

This project was supported by the National Science Foundation under grants

GN-82. GN-36O, and GN-^95- The assistance of Prof. Susumu Kunofs research

group, Dr. Owen Gingerich of the Smithsonian Astrophysical Observatory,

and the operations staff of the Harvard Computing Center is gratefully

acknowledged*

II-62

References

[l] Information Storsige and Retrieval, Report No. ISR-9 to the National
Science Foundation, Harvard Computation Laboratory, August 1965.

[2] G. Salton and M. E. Lesk, The SMART Automatic Document Retrieval
System, Communications of the ACM, Vol. 8, No. 6, June 1965*

[3] G. Salton, ^ogress in Automatic Information Retrieval, IEEE Spectrum,
Vol. 2, No. 8, August 1965.

[̂ 3 G. Salton, The Evaluation of Automatic Retrieval Procedures — Selected
Test Results Using the SMART System, American Documentation, Vol. 16,
No. 3, July 1965*

[5] M. E. Lesk, The SMART System -- Typical Processing Sequences, Report
No. ISR-8 to the National Science Foundation, Section I, Harvard
Computation Laboratory, December 196^.

[6] M. E. Lesk, The SMART Automatic Text Processing and Document Retrieval
System, Report No. ISR-8 to the National Science Foundation, Section
II, Harvard Computation Laboratory, December I96U.

[73 Mathematical Linguistics and Automatic Translation, Report No. NSF-8
to the National Science Foundation, Harvard Computation Laboratory,
1962.

[8] Mathematical Linguistics and Automatic Translation, Report No. NSF-9
to the National Science Foundation, Harvard Computation Laboratory,
May 1963.

[9] Mathematical Linguistics and Automatic Translation, Report No. NSF-13
to the National Science Foundation, Harvard Computation Laboratory,
196U.

[103 S. Kuno, Current Research in Computational and Mathematical Linguistics
at the Computation Laboratory of Harvard University, Report No. NSF-15
to the National Science Foundation, Section I, Harvard Computation
Laboratory, August 1965*

[U] M. Cane, Dictionary Lookup and Updating Procedures, Report No. ISR-7*
Section IV, and Report No. ISR-9, Section V to the National Science
Foundation, Harvard Computation Laboratory, June 196^ and August
1965.

[123 M. Cane, op. cit.

11-63

References (continued)

[13] C Harris, Dictionary and Hierarchy Construction, Report No. ISR-7,
to the National Science Foundation, Section III, Harvard Computation
Laboratory, June 196^.

[ik] J. Prowse, Syntactic Analysis of Incomplete Sentences in the SMART
System, Report No. ISR-9 to the National Science Foundation,
Section XI, Harvard Computation Laboratory, August 1965*

[153 M. E. Lesk, Evaluation of Retrieval Results in the Extended SMART
System, Report No. ISR-9* to the National Science Foundation,
Section XVII, Harvard Computation Laboratory, August 1965*

[l6] G. Hochgesang, SOCCER - A Concordance Program, Report No. ISR-11
to the National Science Foundation, Se.ction H I , Cornell University,
June 1966.

