<table>
<thead>
<tr>
<th>Document Number</th>
<th>Title</th>
<th>Authors</th>
<th>Description</th>
<th>Year</th>
<th>NACA TN.</th>
</tr>
</thead>
<tbody>
<tr>
<td>14002</td>
<td>Laboratory investigation of an autopilot utilizing a mechanical linkage with a dead spot to obtain an effective rate signal.</td>
<td>SEABERG, E.C.</td>
<td>1956. NACA TN.3602.</td>
<td>1956</td>
<td>3602.</td>
</tr>
<tr>
<td>14003</td>
<td>Theoretical study of the lateral frequency response to gusts of a fighter airplane, both with controls fixed and with several types of auto-pilots.</td>
<td>ADAMS, J.J. & MATHEWS, C.W.</td>
<td>1956. NACA TN.3603.</td>
<td>1956</td>
<td>3603.</td>
</tr>
<tr>
<td>14004</td>
<td>Low speed yawed rolling characteristics and other elastic properties of a pair of 26-inch diameter, 12 ply rating, type VII aircraft tires.</td>
<td>HORNE, W. & others.</td>
<td>1956. NACA TN.3604.</td>
<td>1956</td>
<td>3604.</td>
</tr>
<tr>
<td>14006</td>
<td>Tabulation of the functions which occur in the aerodynamic theory of oscillating wings in supersonic flow.</td>
<td>HUCKEL, Vera.</td>
<td>1956. NACA TN.3606.</td>
<td>1956</td>
<td>3606.</td>
</tr>
<tr>
<td>14007</td>
<td>Effect of thickness, camber and thickness distribution on airfoil characteristics at Mach numbers up to 1.0.</td>
<td>DALEY, B.N. & DICK, R.S.</td>
<td>1956. NACA TN.3607.</td>
<td>1956</td>
<td>3607.</td>
</tr>
<tr>
<td>14008</td>
<td>Hydrodynamic impact loads in smooth water for a prismatic float having an angle of dead rise of 10°.</td>
<td>EDGE, P.M.</td>
<td>1956. NACA TN.3608.</td>
<td>1956</td>
<td>3608.</td>
</tr>
<tr>
<td>Appendix A (Continued)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14010 HARRIN, E. N. Comparison of landing-impact velocities of first and second wheel to contact from statistical measurements of transport airplane landings. 1956. NACA TN.3610.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14011 SPAHR, J. R. Theoretical investigation of the effects of configuration changes on the center-of-pressure shift of a body-wing-tail combination due to angle of attack and Mach number at transonic and supersonic speeds. 1955. NACA RM A55F02.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14016 BULL, G. V. Aeronautical studies in the aeroballistics range. 1957. CARDE REPORT No. 302/57.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14017 KRIEGER, F. J. & WHITE, W. B. The composition and thermodynamic properties of air at temperatures from 500 to 8000°K and pressures from 0.00001 to 100 atmospheres. 1957. Rand Corp. R.149.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix A (Continued)

14021 MILLER, A. E. An analysis of the requirements for oxygen in commercial turbo-prop and jet transports. 1957. SAE Preprint.

14023 ALLEN, H. Combustion of various highly reactive fuels in a 3.84 by 10 inch Mach 2 Wind Tunnel. N. A. S. A. Memo 1-15-59E.

14027 HOFFMAN, S. Comparison of zero lift drag determined by flight tests at transonic speeds of pylon, underslung, and symmetrically mounted nacelles at 40 per cent semispan of a 45° swept-back wing and body combination. June 1951. NACA RM. L51D26.

14028 STRASS, H. K. & others. Some effects of spanwise aileron location and wing structural rigidity on the rolling effectiveness of 0.3-chord flap type ailerons on a tapered wing having 63° sweep-back at the leading edge and NACA 64A005 airfoil sections. 1951. NACA RM. L51D18a.

14029 LUOMA, Arvo. A. Aerodynamic characteristics of four wings of sweepback angles 0°, 35°, 45°, and 60°, NACA 65A006 airfoil section, aspect ratio 4, and taper ratio 0.6 in combination with a fuselage at high subsonic Mach numbers and at a Mach number of 1.2. 1951. NACA RM. L51D13.
Appendix A (Continued)

14030 Spreeman, K. P. & Alford, W. J. Investigation of the effects of twist and camber on the aerodynamic characteristics of a 50° 38' sweptback wing of aspect ratio 2.98. NACA RM. L51C16.

14031 Johnson, H. S. Wind tunnel investigation at subsonic and low transonic speeds of the effects of aileron span and spanwise location on the rolling characteristics of a test vehicle with three untapered 45° sweptback wings. April 1951. NACA RM. L51B16.

14032 Heldenfels, R. & Vosteën, L. Approximate analysis of effects of large deflections and initial twist on torsional stiffness of a cantilever plate subjected to thermal stresses. 1957. NACA TN. 4067.

14035 Williams, J. L. Wind tunnel investigation of effects of spoiler location, spoiler size and fuselage nose shape on directional characteristics of a model of a tandem-rotor helicopter, fuselage. 1958. NACA TN. 4305.

14036 George, J. M. The measurement of air temperature in high speed flight. C. of A. Note 86.

14038 Miles, D. J. The improvement of the voltage waveform of high frequency alternators. 1956. R. A. E. TN. El. 136.

Appendix A (Continued)

14040 COX, W. J. G. Development of the types IT. 3-1-1 and 3-2-1 accelerometers. 1957. R.A.E. TN. Instn. 158.

14042 ROWLEY, G. C. Basic cold cathode electronic units for the assembly of special purpose decimal computers. 1957. R.A.E. TN. M.S. 34.

Appendix A (Continued)

Appendix A (Continued)

Appendix A (Continued)

14076 PARET, R. E. Fabrication of low nickel high manganese steels. Metal Progress May 1956 pp 54 - 57.

14077 ADAMS, C. M. Gating and risering of investment castings. Metal Progress May 1956, pp 58 - 60.

14079 KAUFMAN, J. W. Prestressing ultra high strength steel to perform even higher duty. Metal Progress, May 1956, pp 87 - 90.

14080 LAMBOURNE, N. C. On the conditions under which energy can be extracted from an air stream by an oscillating aerofoil. Aero. Quarterly, 1952-54, pp 55 - 68.

Appendix A (Continued)

14097 Integral Skins: Production techniques and equipment used in the manufacture of large wing panels. Aircraft Prod. 1957, pp 260 - 272.
Appendix A (Continued)

14098 Drilling and lapping components in hydraulic servo equipment. Aircraft Prod. 1957, pp 274 - 278.
