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Abstract

IR revolves around evaluation. Therefore, IR researchers should employ sound evaluation
practices. Nowadays many of us know that statistical significance testing is not enough,
but not all of us know exactly what to do about it. This paper provides suggestions on
how to report effect sizes and confidence intervals along with p-values, in the context of
comparing IR systems using test collections. Hopefully, these practices will make IR papers
more informative, and help researchers form more reliable conclusions that “add up.” Finally,
I pose a specific question for the IR community: should IR journal editors and SIGIR PC
chairs require (rather than encourage) reporting of effect sizes and confidence intervals?

1 Introduction

The objective of this paper is to initiate a discussion on better practices in reporting experi-
mental results in IR, especially in the context of laboratory experiments using test collections.
Early IR researchers were rather reluctant to use statistical significance tests (especially para-
metric tests); that has changed over the past decades, but many modern IR researchers who
use test collections report only the p-values (or worse, we often just say “the difference is
statistically significant at α = 0.05”1.

It is well-known that reporting p-values is not enough, because they reflect both the
sample size (number of topics in our case) and the effect size (magnitude of the difference
between systems) (e.g., [4, 7, 25]). For example, suppose that an IR researcher compared
systems X and Y using a test collection with n topics, and obtained per-topic performance
differences (d1, . . . , dn) = (x1 − y1, . . . , xn − yn) in terms of some evaluation measure. The
test statistic for a paired t-test in this case would be

t0 =
d̄

√
V/n

=
√
n

d̄√
V

(1)

where d̄ =
∑n

j=1 dj/n (the sample mean, which is the unbiased estimate of the population
mean) and V =

∑n
j=1(dj − d̄)2/(n − 1) (the unbiased estimate of the population variance).

Now, as t0 becomes larger (i.e., more extreme), the corresponding p-value becomes smaller
and therefore the result is more likely to be considered statistically significant. However, it

1Or even worse: “the difference is significant.”
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is clear from Eq. 1 that a large t0 may mean either (a) the sample size n is large; or (b) the
sample effect size d̄/

√
V , the difference between X and Y measured in standard deviation

units, is large. A p-value does not tell us which is the case. In short, discussing effect sizes
along with p-values means trying to isolate the real difference from the sample size effect.

Outside the IR community, some top-tier journals now require reporting of effect sizes
and confidence intervals along with p-values [4, 5, 6, 7, 13, 14]. Whereas, take the ACM TOIS
Information for Authors page2 as an example: as of May 14, 2014, it only mentions classifical
significance testing: “Statistical tests should be included to support empirical claims. When
reporting statistics, the name of the statistic, the degrees of freedom, the value obtained, and
the p-value should be reported, e.g., F (3, 65) = 4.83, p < 0.01.” Thus, while effect sizes
and confidence intervals may be nothing new to many IR researchers3, it appears that the
reporting practice has not really prevailed, at least in test collection-based studies. Hence,
this paper is primarily intended for those who routinely use IR test collections to compare two
or more systems and conduct statistical significance tests. I shall try to provide a tentative
guideline for reporting effect sizes and confidence intervals in the above contexts. If the
IR community standardise such reporting practices to some extent, this may help us form
reliable and practically significant4 conclusions through accumulation of informative results
from different studies.

The remainder of this paper is organised as follows. Section 2 is a collection of quotations
from past IR research, which reflects how the IR community slowly adopted (parametric)
statistical significance testing, and how it has been questioned recently. Readers not inter-
ested in the history can skip this section and go directly to Section 3, which suggests exactly
how to report effect sizes and confidence intervals for researchers trying to compare two or
more IR systems using a test collection with n topics. Section 4 discusses whether and how a
“statistical reform” [5, 6] in IR should be brought about, as well as a few other possibilities.

2 Looking Back

In the early days, IR researchers were very cautious about the assumptions underlying (para-
metric) significance testing.

“An attractive feature of the sign test is that normality of the input data is not required,
and since this normality is generally hard to prove for statistics derived from a request-
document correlation process, the sign-test probabilities may provide a better indicator of
system performance than the t test.” (Salton and Lesk, 1968 [18], p.15)

“Parametric tests are inappropriate because we do not know the form of the underlying
distribution.” (Van Rijsbergen, 1979 [23], p.136)

“Since the form of the population distributions underlying the observed performance values
is not known, only weak tests can be applied; for example, the sign test.” (Sparck Jones and
Willet, 1997 [21], p.170)

If researchers are worried about the underlying assumptions such as normality, there are

2http://tois.acm.org/authors.html
3See, for example, Peter Bailey’s SIGIR paper writing tip No.5: http://research.microsoft.com/en-us/

people/pbailey/sigir-paper-writing-tips.aspx.
4“A statistically significant result is one that is unlikely to be the result of chance. But a practically significant

result is meaningful in the real world. It is quite possible, and unfortunately quite common, for a result to be
statistically significant and trivial. It is also possible for a result to be statistically nonsignificant and important.” [4]
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distribution-free, computer-based alternatives to parametric significance testing, namely, the
bootstrap test [16, 19] and the randomisation test [20, 22]. On the other hand, the modern
view is that parametric tests such as the t-test and ANOVA are in fact applicable to many
situations in IR, as these tests are known to be robust to assumption violations. The t-test,
for example, is known to be highly consistent in practice with the distribution-free bootstrap
and randomisation tests.

“While the errors may not be normal, the t-test is relatively robust to many violations of
normality. Only heavy skewness (lack of symmetry) or large outliers (observations very far
from the mean) will seriously compromise its validity.” (Hull, 1993 [8], p.334)

“These simulation experiments suggest that if we are going to worry about assumptions,
homoscedasticity and linearity rather than normality are the ones we should worry about,
though even then the errors are small and may very well cancel out.” (Carterette, 2012 [3],
p.23)

But while the IR community began to accept parametric significance tests, the aforemen-
tioned limitations of significance testing began to receive more attention than before, and sta-
tistical reforms were introduced in several research disciplines outside IR [5, 6]. Carterette’s
recent remarks on significance testing in IR is in line with these developments:

“With all of these questions, it is hard to escape the feeling that statistical inference is
ultimately subjective, only providing a thin veneer of objectivity that makes us feel a little more
comfortable about experimental rigor. That does not mean we should throw out the entire
edifice — on the contrary, though we believe our analysis conclusively shows that a p-value
cannot have any objective meaning, we still believe p-values from paired t-tests provide a good
heuristic that is useful for many of the purposes they are currently used for. We only argue
that p-values and significance test results in general should be taken with a very large grain
of salt, and in particular have a limited effect on publication decisions and community-wide
decisions about “interesting” research directions.” (Carterette, 2012 [3], p.27)

As was mentioned earlier, p-values are considered uninformative (or even harmful) in
some research disciplines [5, 6]. So what exactly can we do about it? This paper attempts
to provide a tentative answer, by means of a draft guideline for reporting effect sizes and
confidence intervals in IR experiments using test collections.

Before concluding this section, it is worth recalling a well-known fact that some early IR
researchers did try to distinguish between statistical significance and practical significance.
Discussing effect sizes is a more theoretically-grounded approach to measuring the latter.

“It must nevertheless be admitted that the basis for applying significance tests to retrieval
results is not well established, and it should also be noted that statistically significant perfor-
mance differences may be too small to be of much operational interest.” (Sparck Jones, 1981,
p.243)

“In a broad way, I shall characterise performance differences, assumed statistically sig-
nificant, as interesting if they are at least noticeable, i.e. of the order of 5-10% different, and
as rather more interesting if they are material, i.e. more than 10%.” (Sparck Jones, 1974,
p.5)

3 Looking Forward

This section provides a draft guideline for reporting effect sizes (ESs) and confidence intervals
(CIs) along with p-values. We consider two typical cases: comparing two systems with a
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paired t-test, and comparing m(> 2) systems with a two-way ANOVA without replication5.
The former test should be applied when we have two systems X and Y and their per-
topic performance differences (d1, . . . , dn) = (x1 − y1, . . . , xn − yn); the latter test may be
applied when we have m(> 2) systems with their per-topic performance scores xij (i =
1, . . . ,m, j = 1, . . . , n). Note that when m > 2, conducting a t-test with a significance
criterion α independently for every system pair results in a familywise error rate of 1− (1−
α)m(m−1)/2 [3, 4]: for example, if m = 10 and α = 0.05, the probability that there is at least
one Type I error (finding a nonexistent difference) amounts to 1 − 0.9545 = 0.90. A better
approach in this case would be to conduct ANOVA first to test the hypothesis that all of the
m systems are equally effective; if this null hypothesis is rejected, then a multiple comparison
test such as the randomised Tukey HSD test [3, 17] can be applied, as discussed later6.

3.1 Comparing Two Systems

3.1.1 Two-sided Paired t-test

Given {xj} and {yj}, the per-topic performance scores for systems X and Y (j = 1, . . . , n),
we assume that the scores are independent and that xj ∼ N(µX ,σ2

X) and yj ∼ N(µY ,σ2
Y ).

Under these assumptions, dj = xj−yj ∼ N(µ,σ2) where µ = µX−µY and σ2 = σ2
X+σ2

Y , and
t = (d̄− µ)/

√
V/n ∼ t(n− 1) (i.e., t distribution with n− 1 degrees of freedom). Therefore,

under the null hypothesis H0 (namely, µX = µY ), t0 = d̄/
√
V/n ∼ t(n− 1).

Given a significance criterion α, we reject H0 if |t0| ≥ t(n − 1;α) where t(φ;α) is the
two-sided critical t value with φ degrees of freedom for probability α7. As was mentioned
earlier, the actual p-value should be reported8.

3.1.2 Reporting Effect Sizes

For the paired t-test (See Eq. 1), a useful effect size to report would be the sample effect size
given by

ES pairedt =
|d̄|√
V

. (2)

Recall that d̄ =
∑n

j=1 dj/n (the sample mean, which is the unbiased estimate of the popu-
lation mean µ) and V =

∑n
j=1(dj − d̄)2/(n − 1) (the unbiased estimate of the population

variance σ2).
It should be noted that Eq. 2 is not an estimate of the population effect size given by µ/σ:

rather, it happens to be an estimate of a population effect size of the form µ/σ
√
2(1− ρXY ),

where ρXY denotes the population correlation coefficient between X and Y [14]. Hence,
effect sizes for paired t-tests as defined by Eq. 2 should not be compared directly with effect
sizes for unpaired tests such as Cohen’s d [4]. If all IR test collection users stick to the paired
test and Eq. 2 wherever appropriate, there should be no problem.

5“without replication” means that, for every system-topic pair, there is exactly one measurement, which is
usually true in experiments based on test collections.

6Ellis [4] remarks that the approach of adjusting α (e.g., Bonferroni correction) “may be a bit like spending
$1,000 to buy insurance for a $500 watch”.

7With Microsoft Excel, TINV(α,φ) or T.INV.2T(α,φ).
8With Microsoft Excel, the p-value may be obtained by TDIST(t0,φ, 2) or T.DIST.2T(t0,φ).
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3.1.3 Reporting Confidence Intervals

Since we have assumed that t = (d̄− µ)/
√
V/n ∼ t(n− 1), it follows that

Pr [−t(n− 1;α) ≤ t ≤ t(n− 1;α)] = 1− α , (3)

which can be rewritten as

Pr [d̄−ME ≤ µ ≤ d̄+ME] = 1− α , (4)

where the margin of error ME is given by:

ME = t(n− 1;α)
√
V/n . (5)

Thus, using Eq. 5, a 100(1− α)% CI for µ is given by [d̄−ME , d̄+ME ].

3.2 Comparing m(> 2) Systems

3.2.1 Two-way ANOVA without replication

Suppose we have m systems evaluated with n topics; we have the performance scores xij
(i = 1, . . . ,m and j = 1, . . . , n) which we assume to be independent. We furthermore
assume that xij can be modeled as xij = µ + ai + bj + εij , where εij ∼ N(0,σ2) and∑m

i=1 ai = 0,
∑n

j=1 bi = 0. Here, µ is the grand mean of the population, ai is the system
effect, bi is the topic effect, and εij is the residual9. Note that we assume a common variance
σ2 across the m systems (just like when we conduct an unpaired t-test where the variance is
unknown): this is called the homoscedasticity assumption.

From the observed values {xij}, we first compute the grand mean of the sample x̄ =
1

mn

∑m
i=1

∑n
j=1 xij , the system means x̄i• =

1
n

∑n
j=1 xij , and the topic means x̄•j =

1
m

∑m
i=1 xij .

Then we compute the following sum of squares:

ST =
m∑

i=1

n∑

j=1

(xij − x̄)2 , (6)

SA = n
m∑

i=1

(x̄i• − x̄)2 , SB = m
n∑

j=1

(x̄•j − x̄)2 , (7)

SE =
m∑

i=1

n∑

j=1

(xij − x̄i• − x̄•j + x̄)2 = ST − SA − SB . (8)

Note that ST measures how the observed values differ from the grand mean, while SA mea-
sures how each system mean differs from the grand mean; SE represents what is left after
removing the between-system variation SA and the between-topic variation SB from the total
variation.

Our null hypothesis H0 for the system effect is that a1 = . . . = am = 0, i.e., that all
systems are equivalent. Let the mean squares be VA = SA/φA, VB = SB/φB, VE = SE/φE

where φA = m− 1,φB = n− 1,φE = (m− 1)(n− 1). Then under H0, it is known that

F0 = VA/VE = (n− 1)SA/SE ∼ F (φA,φE) (9)

9In Two-way ANOVA without replication, the system-topic interaction cannot be separated from the residual.
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where F (φA,φE) is the F distribution with (φA,φE) degrees of freedom. Hence, we reject
H0 if F0 ≥ F (φA,φE ;α), where F (φA,φE ;α) is the critical F value (with φA and φE) for
probability α10. It is clear from Eq. 9 that a large F0 may imply either (a) a large sample
size n; or (b) that the between-system variation SA is substantially higher than SE , which
suggests that not all systems are equal11.

If H0(a1 = . . . = am = 0) is rejected, then a Tukey HSD (Honestly Significant Differences)
test or its computer-based randomised version [3, 17] can be applied to find exactly which
pairs are statistically significantly different, while keeping down the familywise error rate
to α12. For systems X and Y whose difference in means is given by d̄XY , the classical
Tukey HSD test rejects the null hypothesis that X and Y are equivalent if |d̄XY |/

√
VE/n ≥

q(m, (m − 1)(n − 1);α), where q(m, (m − 1)(n − 1);α) denotes the critical value of the
studentised range distribution with (m, (m− 1)(n− 1)) degrees of freedom at α, which needs
to be obtained by a table lookup. Note that VE can be obtained from the ANOVA. Whereas,
the randomised Tukey HSD is distribution-free and can be automatically computed for any
degrees of freedom.

3.2.2 Reporting Effect Sizes

With ANOVA, the population effect sizes often discussed are:

η2 =
σ2
A

σ2
T

=
σ2
A

σ2
A + σ2

B + σ2
E

, (10)

η2p =
σ2
A

σ2
A + σ2

E

(11)

where σ2
T ,σ

2
A,σ

2
B,σ

2
E , are the unknown population variances that correspond to the sample

variations ST , SA, SB, SE , respectively. Thus, η2 represents “how much of the total variance
can be explained by the between-system variance,” while the partial effect size η2p represents
the same quantify after removing the between-topic variance. The above effect sizes are often
estimated from samples as η̂2 = SA/ST and η̂2p = SA/(SA + SE), but it is known that η̂2

and η̂2p are positively biased: they heavily overestimate η2 and η2p especially when the sample
size is small [14]. (Weren’t we trying to isolate the effect size from the sample size?) For
two-way ANOVA without replication, more accurate estimates of η2 and η2p can be obtained
as [7, 14, 15]:

ω2 =
φA(VA − VE)

ST + VB
, (12)

ω2
p =

φA(VA − VE)

SA + (n− φA)VE
. (13)

The above effect sizes measure the system effect as a whole in the context of ANOVA.
However, what IR researchers are often more interested in is the Tukey HSD result which
shows exactly which of the systems are statistically significantly different. When researchers

10With Microsoft Excel, FINV(α,φA,φE) or F.INV.RT(α,φA,φE). The p-value for F0 can be obtained as
FDIST(F0,φA,φE) or F.DIST.RT(F0,φA,φE).

11The topic effect may also be tested in a similar way: the null hypothesis in this case is that b1 = . . . = bn = 0,
i.e., that all systems are equivalent, and F0 = (m− 1)SB/SE ∼ F (φB ,φE).

12An implementation of Carterette’s randomised Tukey HSD test is available from http://www.f.waseda.jp/
tetsuya/tools.html.
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report on the p-values of the Tukey HSD test (or its randomised version), one is tempted to
report effect sizes of the form similar to Eq. 2, that is not directly affected by the sample
size and measures the difference in standard deviation units. Since the test statistic for the
classical Tukey HSD test is given by d̄XY /

√
VE/n, a useful sample effect size might be:

ESHSD = |d̄XY |/
√
VE . (14)

Recall that VE is the remainder mean square, obtained after removing the between-system
and between-topic variations.

As there are several effect size estimates available for ANOVA [7, 15], it is important for
us to clarify exactly which effect sizes we are reporting in our papers. Moreover, we should
provide the basic statistics such as SA and SE in our papers so that other researchers can
compute their favourite effect sizes from our data. Of course, making the raw data publicly
and permanently available to the community would solve a lot of problems.

3.2.3 Reporting Confidence Intervals

In the context of ANOVA where we accept the homoscedasticiy assumption, the following
margin of error can be used to obtain a CI for every system [9]:

ME = t(φE ;α)
√
VE/n . (15)

Thus, for the i-th system, its 100(1− α)% CI is given by [x̄i• −ME, x̄i• +ME]. Note that
the above gives a tigher margin compared to Eq. 5.

Finally, it is important to visualise CIs by means of error bars on graphs. Every graph
that shows mean statistics should contain error bars (that represent CIs)13. With Microsoft
Excel, it is very easy to add error bars to graphs, with user-specified ME values14.

3.3 Examples

3.3.1 Example: Comparing Two Systems

Table 1: Example: per-topic performances and differences for systems X and Y (n = 10).
Topic ID 01 02 03 04 05 06 07 08 09 10 mean
System X 0.39 0.28 0.31 0.21 0.19 0.64 0.75 0.36 0.66 0.54 0.43
System Y 0.27 0.04 0.18 0.08 0.19 0.54 0.57 0.28 0.20 0.40 0.28

Suppose we have obtained the results shown in Table 1. Then d̄ = 0.16, V = 0.015, t0 =
d̄/

√
V/n = 4.1 so the p-value is TDIST(4.1, 10 − 1, 2) < 0.0029. The sample effect size is

ESpairedt = d̄/
√
V = 1.3. Also, if α = 0.05, then ME = TINV(0.05, 10 − 1) ∗

√
V/n = 0.088,

so the 95% CI for the difference is 0.16± 0.088. These results may be reported as follows:
“According to a two-sided paired t-test for the difference in means d̄ = 0.16 (with the

unbiased estimate of the population variance V = 0.015), System X statistically significantly
outperforms Y (t(9) = 4.1, p < 0.0029,ESpairedt = 1.3, 95% CI [0.07, 0.25]).”

13Error bars are sometimes used to represent standard deviations or standard errors, so it is important to clearly
indicate what the bars represent.

14See, for example, http://office.microsoft.com/en-us/excel-help/add-error-bars-to-a-chart-HA102840044.
aspx .
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3.3.2 Example: Comparing m(> 2) Systems

Table 2: Example: per-topic performances for systems X, Y, Z (m = 3, n = 10).
Topic ID 01 02 03 04 05 x̄i•
System X 0.40 0.44 0.42 0.40 0.39 0.41
System Y 0.35 0.40 0.40 0.39 0.40 0.39
System Z 0.35 0.40 0.37 0.38 0.39 0.38

Table 3: Two-way ANOVA (without replication).
Sum of squares Degrees of freedom Mean squares F0

Between-system SA = 0.0027 φA = 2 VA = 0.0013 6.8
Between-topic SB = 0.0034 φB = 4 VB = 0.00084 4.3
Within SE = 0.0016 φE = 8 VE = 0.00020 –

Suppose we have obtained the results shown in Table 2. The grand mean is then
x̄ = 0.39, SA = n

∑m
i=1(x̄i• − x̄)2 = 0.0027, SB = m

∑n
j=1(x̄•j − x̄)2 = 0.0034, ST =∑m

i=1
∑n

j=1(x̄ij− x̄)2 = 0.0076, SE = ST −SA−SB = 0.0016, VA = SA/φA = 0.0027/(3−1) =
0.0013, VB = SB/φB = 0.0034/(10− 1) = 0.00084, VE = SE/φE = 0.0016/(3− 1)(10− 1) =
0.00020. Therefore, F0 = (n − 1)SA/SE = 6.76, and the p-value is FDIST(6.76,φA,φE) <
0.020. (The topic effect can be tested in a similar way.) The population effect sizes for
the ANOVA can be estimated as ω2 = 0.27,ω2

p = 0.70 (Eqs. 10 and 11). According to a
randomised Tukey HSD test, only the difference between X and Z is found to be statisti-
cally significant (p = 0.029), and ESHSD = d̄XZ/

√
VE = 0.022/

√
0.00020 = 1.6. As for the

common margin of error, if α = 0.05, ME = TINV(0.05,φE) ∗
√
VE/n = 0.015. This is then

applied to the system means 0.41, 0.39, 0.38 to obtain the CIs. These results may be reported
as follows:

“Table 3 shows the result of a two-way ANOVA (without replication) applied to the
comparison of m = 3 systems with n = 5 topics. The system effect is statistically significant
(F (2, 8) = 6.8, p < 0.020)15. The population effect size and the partial population effect size
for the ANOVA can be estimated from Table 3 as ω2 = φA(VA − VE)/(ST + VB) = 0.27
and ω2

p = φA(VA − VE)/(SA + (n − φA)VE) = 0.70. A randomised Tukey HSD test shows
that only the difference between X and Z is statistically significant (p = 0.029,ESHSD =
0.022/

√
VE = 1.6). Figure 1 shows the mean performances of the three systems with 95%

CIs using the same VE from Table 3.”

4 Summary

Following the practices in some research disciplines outside IR, this paper provided a draft
guideline for reporting experimental results in IR with p-values, effect sizes and confidence
intervals. I do not claim that this is the right way to report results, but I argue that it
is important to (a) make papers as informative as possible, for example, by separating the
effect size from the sample size and by reporting basic statistics such as V (Section 3.1.2),
SA, SE (Section 3.2.1); and (b) share some basic reporting practices across IR researchers to
facilitate meta-analysis [4] and to form conclusions that “add up” [1].

15The topic effect is also statistically significant (F (4, 8) = 4.3, p < 0.039).
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Figure 1: Comparison of systems X, Y and Z.

According to Fidler et al. [5, 6] who have observed the (slow progress of) statistical
reforms in medicine, psychology and ecology over the past decades, it is extremely hard to
bring about statistical reforms. They conclude that “requirements may be more effective
than recommendations.” To IR researchers, this translates to: “Maybe IR journal editors
and SIGIR PC chairs should require (rather than encourage) reporting of effect sizes and
confidence intervals?” I think they should.

Another important point to remember is that reporting effect sizes and confidence inter-
vals is not an end in itself. Based on the effect size estimates, researchers should compare
the impact of their research with others, and wherever possible discuss whether their results
may be practically significant.

Finally, there are alternatives to classical hypothesis testing. In psychology, Killeen [12]
recently proposed prep to replace p-values: it represents the probability that a replication
of a study would give a result in the same direction as the original study, which to some
of us may sound reminiscent of the topic-splitting approach of Zobel [26] and Voorhees and
Buckley [24]. Another alternative is the Bayesian approach to hypothesis testing [2, 10, 11],
which was first conceptualised in 1935. Will “new” approaches such as these eventually
replace classical significance testing in IR?
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