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Abstract

How can we run large-scale, community-wide evaluations of information retrieval systems
if we lack the ability to distribute the document collection on which the task is based? This
was the challenge we faced in the TREC Microblog tracks over the past few years. In this
paper, we present a novel evaluation methodology we dub “evaluation as a service”, which
was implemented at TREC 2013 to address restrictions on data redistribution. The basic idea
is that instead of distributing the document collection, we (the track organizers) provided
a service API “in the cloud” with which participants could accomplish the evaluation task.
We outline advantages as well as disadvantages of this evaluation methodology, and discuss
how the approach might be extended to other evaluation scenarios.

1 Introduction

The Cranfield Paradigm [5], especially operationalized in the Text Retrieval Conferences
(TRECs) [12], provides the cornerstone of batch evaluation in information retrieval today. A
fundamental assumption of this methodology is that researchers can acquire the document
collection under study—whether via physical CD-ROMs or DVDs (in the early days), hard
drives (today), or directly downloadable “from the cloud”. What if this is not possible? One
example is a collection of messages posted to Twitter (“tweets”): the company’s terms of
service forbid redistribution of tweets, and thus it would not be permissible for an organiza-
tion to host a collection of tweets for download by researchers.! Other examples of data that
make wide distribution difficult include electronic medical records, a subject of substantial
interest by researchers today—for obvious privacy concerns. Similar issues exist for email
search and desktop search as well.

In this paper, we discuss one workable solution to this challenge that has been operational-
ized in the TREC 2013 Microblog track—a concept we’ve called “evaluation as a service”,
a play on current cloud computing technologies such as “infrastructure as a service” (IaaS),
“platform as a service” (PaaS), and “software as a service” (SaaS). The basic idea is that, in-
stead of distributing the collection, the evaluation organizers provide an API through which

! Although there are third-party resellers of Twitter data, the costs are too high to be a practical mechanism
for distributing research collections.
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the collection can be accessed for completing the evaluation task. This approach makes it not
only possible to conduct large-scale evaluations on non-distributable collections, but offers
other advantages as well. To be fair, however, there are disadvantages that must also be
considered. We attempt to provide a balanced exposition of this evaluation methodology,
highlighting new opportunities as well as issues of concern. Although to date this evaluation
methodology has only been applied to a single TREC task, we conclude by discussing how
the approach might be adapted to other evaluation scenarios as well.

2 Evolution of Evaluation as a Service

The “evaluation as a service” approach implemented in the TREC 2013 Microblog track
evolved out of an attempt to address deficiencies in the data distribution approach imple-
mented in the previous two iterations of the track (which began in 2011). Here, we provide
a quick recap, but refer the reader to previous track overview papers for more details [8, 10].
In TREC 2011 and 2012, the Microblog track used the Tweets2011 collection, specifically
created for those evaluations. Since Twitter’s terms of service prohibit redistribution of
tweets, it was necessary to develop an alternative mechanism for researchers to obtain the
collection. The track organizers devised a process whereby NIST distributed the ids of the
tweets (rather than the tweets themselves). Given these ids and a downloading program we
developed, a participant could “recreate” the corpus. Since the downloading program ac-
cessed the twitter.com site directly, the tweets were delivered in accordance with Twitter’s
terms of service.

The “download-it-yourself” approach adequately addressed the no-redistribution issue
but exhibited scalability limits. In particular, the speed of the downloading program, which
had built-in rate limiting for “robotic politeness”, set a practical upper bound on the size
of the collection. The Tweets2011 collection originally contained 16 million tweets, which is
small by modern standards. For 2013, we hoped to increase the collection size by at least an
order of magnitude, which required a completely new approach.

Our solution was the “evaluation as a service” model. The basic idea is that instead
of distributing the tweets themselves, we provide a service API through which participants
could access the tweets. As the track organizers, we gathered the “official” collection by
crawling the public sample tweet stream from Twitter during a data collection period lasting
two months, from February 1 to March 31, 2013 (inclusive). This data collection period was
publicized on the track mailing list, which gave researchers an opportunity to “follow along”
and gather contemporaneous tweets (although they were unlikely to be the same exact tweets
due to the sampling process the underlies Twitter’s streaming API).? In total, we gathered
259 million tweets, although at the time of the evaluation the collection was reduced to 243
million tweets after the removal of deleted tweets.

We built a search API (implemented using Lucene® and Thrift*) that provides standard-
ized access to the collection. The functionality of the API was determined based on needs
solicited from the community via the track mailing list, which were balanced against avail-
able resources necessary to implement the requested features. All code associated with the

2The participants could of course do whatever they wished with their local tweet collection, but they were under
the same no-distribution restrictions.

Shttp://lucene.apache.org/

‘http://thrift.apache.org/
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retrieval infrastructure is open source,’ including crawler, so that the community can inspect
the code and understand exactly what the software is doing.

The service API provides top k retrieval capabilities using Lucene’s query language and
returns tweets with associated metadata (author, timestamp, tweet text, etc.). The service
API was made available on Amazon’s EC2 service to all registered TREC participants start-
ing in June until the TREC evaluation deadline in August. It was the only method by which
the collection could be accessed, which meant that all participants were required to use the
API to obtain an initial ranking of tweets for a given query (which their custom retrieval
algorithms could then further process).

We are presently analyzing results from the evaluation, and our detailed findings will be
disseminated in the TREC proceedings. However, the evaluation methodology appears to
have been successful. The track received submissions from twenty groups in total, which
represents a healthy community (based on experiences with previous tracks). Since partic-
ipation at TREC is entirely voluntary, this shows that the evaluation-as-a-service model is
tenable: the service API appears to be simple enough for teams to adopt and flexible enough
to enable teams to answer their research questions of interest.

2.1 Advantages

There are several advantages to the evaluation-as-a-service model, which we detail below:

Evaluation on collections that cannot be distributed. This is an obvious point, but
worth emphasizing—the evaluation-as-a-service concept makes large-scale evaluation of tweet
search possible.

More meaningful system comparisons. Modern information retrieval systems have be-
come complex collections of components for document ingestion, inverted indexing, query
evaluation, document ranking, and machine learning. As a result, it can be difficult to
isolate and attribute differences in effectiveness to specific components, algorithms, or tech-
niques. Consider a baseline retrieval model such as BM25 or query-likelihood within the
language modeling framework—alternative implementations may produce substantially dif-
ferent retrieval results due to small but consequential decisions such as the tokenization
strategy, stemming algorithm, method for pruning the term space (e.g., discarding long or
rare terms), and other engineering issues. Although the prevalence of open-source retrieval
engines makes it possible for a researcher to see exactly what a system is doing, in practice
few cross-system comparisons are performed with “calibration” on baseline models, making
it sometimes difficult to compare advanced techniques based on different system implemen-
tations. In some cases, the effects that we are hoping to study are masked by differences we
are not interested in.

One concrete example of this phenomenon is observed in biomedical retrieval. Jiang and
Zhai [6] showed that different tokenization strategies yielded statistically significant differ-
ences in effectiveness due to the prevalence of complex jargon that, for example, frequently
combines letters and numbers (e.g., gene names). It is likely that tokenization will also
have significant effects in tweets to due hashtags, abbreviations, shortened URLSs, and other
Twitter idiosyncrasies.

The evaluation-as-a-service model addresses many of these issues by deploying a common

Shttp://twittertools.cc/
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API that is used by all participants. This means that everything “below” the API (e.g.,
indexing, tokenization, etc.) is ezactly the same for everyone. Thus, we can be confident that
differences in effectiveness can be attributed to retrieval techniques on top of the API, rather
than “uninteresting” issues such as tokenization and stemming.

Support of open-source community development. One decision we made early on
in the development of the evaluation infrastructure for the TREC 2013 Microblog track
was that all associated software would be open source. It is desirable that all participants
know exactly how the API works and have access to all the minor but potentially important
decisions that were made in its implementation (see above).

We hope that this decision has the additional effect of more effectively fostering an open-
source community of pluggable system components. There is growing recognition within the
IR community that open source software helps advance the state of the art; a common API
increases the likelihood that code components inter-operate, thus increasing the likelihood of
adoption. Although there is already widespread availability of open-source retrieval engines,
nearly all systems are monolithic in the sense that they were not designed for service de-
composition along functional boundaries. This means that a particular algorithm developed
for one system cannot be easily used by researchers who have written their code on another
system due to interface incompatibilities. A common API begins to address this issue.

Solution for systems engineering issues. To reflect today’s retrieval environment, mod-
ern document collections for IR evaluations have grown quite large—sizes in the tens of
terabytes are common. Manipulating these large collections represent non-trivial engineer-
ing challenges. Despite the field’s growing familiarity with large-scale distributed frameworks
such as Hadoop, the available open-source solutions are not quite yet “turn key”. Although
the size of the tweet collection used in the TREC 2013 Microblog track remains manageable
(~100 GB compressed), the large sizes of other document collections (e.g., ClueWeb12 or the
TREC KBA corpus) pose a barrier to entry for many research groups. Even for well-resourced
research teams with access to large compute clusters, the effort devoted to systems engineer-
ing challenges might be better spent on the development of retrieval techniques (unless, of
course, the focus of the research is on scalability).

The evaluation-as-a-service model provides a solution to these systems engineering issues.
Scalability challenges only need to be solved once, by the developers of the API. Participants
need not be concerned about systems issues that are hidden behind the abstraction.

2.2 Disadvantages
To be fair, the evaluation-as-a-service model suffers from several challenges:

Limited diversity in retrieval techniques. The biggest drawback of a common service
API is that it prescribes a particular architecture for accomplishing the evaluation task.
In the case of the TREC Microblog track, the API essentially forces the participants to
design their retrieval algorithms around reranking initial results. Despite the fact that such
an architecture is commonplace in both industry [3] and academia [7, 1], any abstraction
necessarily restricts the flexibility of researchers to tackle the problem in creative ways.

We see this as an issue in at least two ways. First, TREC has developed a community-
driven effort to define the retrieval challenges of the day, but (purposely) remains agnostic to
how researchers might go about tackling those challenges. It would be a philosophical shift
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to define both the problem and the methodology (as instantiated in the API). Second, TREC
collections are routinely used in ways for which they were not originally intended: although
this requires some care, creative uses of TREC resources amplify the usefulness of the data
and broadens the impact of the evaluation efforts. The imposition of a common service API
makes creative reuse more difficult.

One possible way to mitigate this concern is to institute community-driven processes
for refining the API so that researchers’ needs are met. Participants could propose new
features to be included in subsequent iterations of an evaluation (for example, at the TREC
workshop); they could even implement the feature themselves (since the API is open source)
and then offer the code contribution for review and integration by the track organizers.

Unknown evaluation characteristics. The information retrieval literature has a tradi-
tion of studies that enhance our understanding of the limits of test collections, e.g., their
reusability, stability, topic effects, and other related issues (e.g., [11, 13, 2, 9], just to name a
few). These studies collectively give us confidence that our evaluation tools can be “trusted”.
The evaluation-as-a-service model violates some assumptions about how test collections are
created, and these issues need to be examined in more detail so that we may gain confidence
in the results. For example, previous work (e.g., [2]) has suggested that the reusability of test
collections is impacted by the diversity of the original judgment pool. It is likely that pools
created using the service API are less diverse because all participants are working from simi-
lar result sets. However, since all participants, both those who participated in test collection
creation and future users of the evaluation resources, must access the collection through the
API, it is less clear how we might encourage diversity.

Note that these concerns represent unknowns rather than outright problems with the
evaluation-as-a-service model. In fact, this model might exhibit all the desirable character-
istics (reusability, stability, etc.) of well-crafted, traditional test collections—we just don’t
know yet. There is a need for studies to examine these issues.

Long-term permanence of service APIs. One essential property of well-built test col-
lections is reusability by researchers who did not participate in their original creation, often
long after the initial evaluation. A traditional test collection, once created, requires relatively
modest resources to maintain. Relevance judgments are small in size and can be easily hosted
on a website (for example, the NIST website, as is customary today); the community has
developed sustainable mechanisms for distributing (even large) document collections based
on a cost-recovery model (e.g., physically mailing hard drives).

Service APIs, on the other hand, are far more expensive to operate: first, hardware re-
sources must be procured (whether physical servers or infrastructure “in the cloud”); second,
humans must be in the loop for both administrative functions (e.g., granting access to new
users) and to ensure availability (e.g., restarting the service when it crashes). Longevity is
especially a concern—for example, TREC collections from the 1990s are still used today. In
the evaluation-as-a-service model, we have not developed a process for sustaining the service
API in the long term. Currently, the TREC Microblog organizers have been responsible
for maintaining the service, but it would be unrealistic to assume availability in perpetuity.
Should NIST take ownership of the service? Or a third-party organization? And if so, when?
Ultimately, who pays for machine and people time? These are issues yet to be worked out
and reflect the changing roles of NIST and researchers in organizing and running large-scale
community evaluations.
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3 Extensions and Conclusions

On balance, the evaluation-as-a-service model presents intriguing possibilities for assessing
the effectiveness of information retrieval systems. We believe that the disadvantages noted
above do not point to fundamental limitations of the evaluation methodology, but rather
highlight its immaturity and our inexperience with the approach—mone of the issues appear
to be insurmountable.

One design decision we made in building the service API was to provide the participants
with direct access to the tweet text and associated metadata. This appears to be a sensible
choice given that Twitter’s native search API delivers comparable data, but for other tasks
this may not be tenable.® For example, it may be problematic to deliver electronic medical
records to evaluation participants. In this case, we see two possible solutions: The first and
more restrictive is to return a surrogate of the original document—for example, extracted
features that can be subsequently analyzed. Of course, it may be difficult to come up with
a useful set of features that doesn’t reveal the original document content.

Alternatively, we can imagine pushing the general idea of evaluation as a service even
further, by shipping code to the evaluation infrastructure. In this approach, participants
would submit their systems, and evaluation would be conducted (either at NIST, at a third-
party site, or “in the cloud”) without the participants ever touching the sensitive evaluation
data.” Although this approach is not new — previous examples include the TREC 2005
Spam track [4] and the Music Information Retrieval Evaluation eXchange (MIREX)® - the
maturation of technologies such as virtualization and standardized RPC mechanisms such
as Thrift make this approach easier to implement.

The “evaluation as a service” concept began originally as an attempt to overcome a
particular usage restriction on a specific type of data, but has evolved into an evaluation
methodology that may have much broader applicability. The model challenges the way our
field thinks about evaluation, and hopefully will stimulate advances in our understanding of
retrieval systems.
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